• Loiselle, P.V. 1985. The Cichlid Aquarium. Tetra-Press, Melle, Germany.
  • Maan, Martine & Machteld Verzijden, 2005. Seksuele selectie en soortvorming Cichlidae 31: 132-11.
  • Wheeler, A. 1979. Fishes of the World. Ferndale Editions, London, UK.
  • Witte, Frans, Henny van der Meer & Kees Barel. 2003. Door cichlidenogen bezien. Cichlidae 29-4: 104-114.
  • Zupanc, G. K. H. 1985. Fish and Their Behaviour. Tetra-Press, Melle, Germany.
  • Akiyama, T., A.A. Kajumulo & . Olsen, 1977. Seasonal variations of plankton and physico-chemical condition in Mwanza Gulf, Lake Victoria. Bull. Freshwat. Fish. Res. Lab. 27: 49-61.
  • Arunga, J.O., 1981. A case study of the Lake Victoria Nile perch Lates niloticus (Mbuta) fishery. In: Proceedings of the Workshop of the Kenya Marine and Fisheries Research Institution on Aquatic Resources of Kenya, Mombassa, 13-19 July 1981. KMFRI & Ken. Nat. Ac. Adv. Arts Sci., Nairobi: 165-184.
  • Balirwa, J.S., C.A. Chapman, L.J. Chapman, I.G. Cowx, K. Geheb, L. Kaufman, R.H. Low-McConnell, O. Seehausen, J.H. Wanink, R.L. Welcomme & F. Witte., 2003. Biodiversity and fishery sustainability in the Lake Victoria basin : An unexpected mariage? BioScience 53: 703-715.
  • Beer, M. de, 1989. Light measurements in Lake Victoria, Tanzania. Ann. Mus. Roy. Afr. Centr. Sc. Zool. 257: 57-60.
  • Barel, C.D.N., R. Dorit, P.H. Greenwood, G. Fryer, N. Hughes, P.B.N. Jackson, H. Kanawabe, R.H. Low-McConnell, M. Nagoshi, A.J. Ribbink, E. Trewavas, F. Witte & K. Yamaoka, 1985. Destruction of fisheries in Africa’s lakes. Nature 315: 19-20.
  • Barel, C.D.N., W. Ligtvoet, T. Goldschmidt, F. Witte & P.C. Goudswaard, 1991. The haplochromine cichlids of Lake Victoria: An assessment of biological and fisheries interest. In: M.H.A. Keenleyside (ed.). Cichlid Fishes: Behaviour, Ecology and Evolution. Chapman & Hall, London, UK: 258-279.
  • Beauchamp, R.S.A. 1958. Utilising the natural resources of Lake Victoria for the benefit of fisheries and agriculture. Nature, 181: 1634-1636.
  • Fryer, G., 1960. Concerning the proposed introduction of Nile perch into Lake Victoria. E. Afr. J. Agric. 25: 267-270.
  • Goldschmidt, T., F. Witte & J.H. Wanink. 1993. Cascading effects of the introduced Nile perch on the detritivorous / phytoplanktivorous species in the sublittoral areas of Lake Victoria. Conserv. Biol. 7: 686-700.
  • Greenwood, P.H. 1974. The cichlid fishes of Lake Victoria, East Africa: the biology and evolution of a species flock. Bull. Br. Mus. Nat. Hist. (Zool.) Suppl. 6: 1-134.
  • Greenwood, P.H. 1981. The Haplocromine Fishes of the East African Lakes: Colected Papers on their Taxonomy, Biology and Evolution. Kraus International Publicatons, Munich, Germany.
  • Johnson, T.C., C.A. Scholz, M.R. Talbot, K. Kelts, R.D. Rickets, G. Ngobi, K. Beuning, I. Ssemmanda & J.W. McGill. 1996. Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science 273: 1091-1093.
  • Kaufman, L.S., L.J. Chapman & C.A. Chapman. 1997. Evolution in fast forward: Haplochromine fishes of the Lake Victoria region. Endeavour 21: 23-30.
  • Kudhongania, A.W & A.J. Cordone. 1974. Batho-spatial distribution patterns and biomass estimates of the major demersal fishes in Lake Victoria. Afr. J. Trop .Hydrobiol. Fish. 3 : 15-31.
  • Levine, J.S. & E.F. MacNichol, 1982. Color vision in fishes. Sci. Am. 46: 140-149.
  • Ligtvoet, W., P.J. Mous, O.C. Mkumbo, Y.L. Budeba, P.C. Goudswaard, E.F.B. Katunzi, M.M. Temu, J.H. Wanink & F. Witte, 1995. The Lake Victoria fish stocks and fisheries. In: F. Witte & W.L.T. van Densen (eds.). Fish Stocks and Fisheries of Lake Victoria: A Handbook for Field Observations. Samara Publishing Ltd., Cardigan, UK: 12-53.
  • Loew, E.R. & W.N. McFarland, 1990. The underwater visual evironment. In: R.H. Douglas & M.B.A. Djamgoz (eds.). The Visual System of Fish. Chapman & Hall, London, UK: 1-40.
  • Mugidde, R., 1993. The increase in phytoplankton primary productivity and biomass in Lake Victoria (Uganda). Ver. Int. Ver. Limnol. 25: 846-849.
  • Ochumba, P.B.O. & D.I. Kibaara, 1989. Observations on blue-green algal blooms in the open waters of Lake Victoria, Kenya. Afr. J. Ecol. 27: 23-34.
  • Ogutu-Owayo, R., 1990. The decline of the native fishes of Lake Victoria and Kyoga (East Africa) and the impact of introduced species, especially the Nile perch, Lates nilotica and the Nile tilapia, Oreochromis niloticus. Env. Biol. Fish. 27: 81-96.
  • Reynolds, J.E., D.F. Gréboval & P. Mannini. 1995. Thirty years on: the development of the Nile perch fishery in Lake Victoria. In: T.J. Pitcher & P.J.B. Hart (eds.). The Impact of Species Changes in Afrian Lakes. Chapman & Hall, London, UK: 181-214.
  • Seehausen, O. 1996. Lake Victoria Rock Cichlids: Taxnomy, Ecology and Distribution, Verduyn Cichlids, Zevenhuizen, The Netherlands.
  • Seehausen, O., J.J.M. van Alphen & F. Witte, 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808-1811.
  • Van Oijen, M.P.J. 1995. Key to Lake Victoria fishes other than haplochromine cichlids. In: Witte, F. & W.L.T. van Densen (eds.). Fish Stocks and Fisheries of Lake Victoria: A Handbook for Field Observations. Samara Publishing Ltd., Cardigan, UK : 209-300.
  • Van Oijen, M.P.J., F. Witte & E.L.M. Witte-Maas, 1981. An introduction to eclogical and taxonomic investigations on the haplochromine cichlids from the Mwanza Gulf of Lake Victoria. Neth. J. Zool. 31: 149-174.
  • Welcomme, R.L., 1967. Observations on the biology of the introduced species of Tilapia in Lake Victoria. Rev. Zool. Bot. Afr. 76: 249-279.
  • Welcomme, R.L., 1988. International introductions of inland fish species. FAO Fish. Tech. Pap. 294: 1-318.
  • Witte, Frans, 2005. Dertig jaar Leids onderzoek aan de cichliden van het Victoriameer. Cichlidae 31: 125-131.
  • Witte, F. & P.C. Goudswaard, 1985. Aspects of the haplochromine fishery in southern Lake Victoria. FAO Fish. Rep. 335: 81-88.
  • Witte, F., T. Goldschmidt, P.C. Goudswaard, W. Ligtvoet, M.J.P. van Oijen & J.H. Wanink, 1992a. Species extinction and concomitant ecological changes in Lake Victoria. Neth. J. Zool. 42: 214-232.
  • Witte, F., T. Goldschmidt, J.H. Wanink, M. van Oijen, K. Goudswaard, E. Witte-Maas & N. Bouton, 1992b. The destruction of an endemic species flock: quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Env. Biol. Fish. 34: 1-28.
  • Witte, F. & M. J. P. van Oijen. 1995. Biology of haplochromine trophic groups. In: F. Witte & W. L. T. van Densen (eds.), Fish Stocks and Fisheries of Lake Victoria: A Handbook for Field Observations. Samara Publ. Ltd., Cardigan, UK : 321-335.
  • Witte, Frans, Henny van der Meer & Kees Barel, 2003. Door cichlidenogen bezien: het belang van het gezichtsverogen bij haplochromine cichliden voor het ontstaan en in stand houden van diversiteit. Cichlidae 29: 104-114.
  • Witte, F., J. H. Wanink, H. A. Rutjes, H. J. van der Meer & G. E. E. J. M. van den Thillart. 2005. Eutrophication and its influences on the fish fauna of Lake Victoria. In: M.V. Reddy, ed. Restoration and Management of Tropical Eutrophic Lakes. Science Publ. Inc. Enfield, USA : 301-338.
  • Barel, C.D.N., 1983. Towards Constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth. J. Zool. 33: 357-424.
  • Barel, C.D.N., 1984. Form-relations in the context of constructional morphology: the eye and suspensorium of lacustrine cichlidae (Pisces, Teleostei). Neth. J. Zool. 34: 439-502.
  • Barel, C.D.N., 1985. A Matter of Space. Constructional Morphology of Cichlid Fishes. Thesis. Rijksuniversiteit Leiden.
  • Barel, C.D.N., 1993. Concepts of an architectonic approach to transformation morphology. Acta Biotheor. 41: 345-381.
  • Barel, C.D.N., G.Ch. Anker, F. Witte, R.J.C. Hoogehoud & T. Goldschmidt, 1989. Constructional constraint and its ecomorphological implications. Acta Morphol. Neerl.-Scand. 27: 83-109.
  • Beer, M. de, 1989. Light measurements in Lake Victoria, Tanzania. Ann. Mus. Roy. Afr. Centr. Sc. Zool. 257: 57-60.
  • Bock, W.J., 1980. The definition and recognition of biological adaptation. Amer. Zool. 20: 217-227.
  • Dullemijer, P., 1974. Concepts and Approaches in Animal Morphology. Van Gorkum, Assen, The Netherlands.
  • Dullemijer, P. & C.D.N. Barel, 1977. Functional morphology and evolution. In: M. Hecht, P.C. Goody & B.M. Hecht (eds.). Major Paterns in Vertebrate Evolution. Nato Advanced Study Institute. Series A, vol.14: 83-117. Plenum Press, NY, London.
  • Goldschmidt, T., 1989. An Ecological and Morphological Field Study on the Haplochromine Cichlid Fishes (Pisces, Cichlidae) of Lake Victoria. Thesis. Rijksuniversiteit Leiden.
  • Hoogerhoud, R.J.C., 1986. Ecological Morphology of some Cichlid Fishes. Thesis. Rijksuniversiteit Leiden.
  • Krebs, J.R. & N.B. Davies (eds.), 1978. Behavioural ecology. An Evolutionary Approach. Blackwell Scientific Publications, Oxford, UK.
  • Otten, E., 1985. Proportions of the jaw mechanism of cichlid fishes. Changes and their meaning. In: G.A. Zweers & P. Dullemeijer (eds.). Architecture in Living Structure. Martinus Nijhoff/Dr.W.Junk Publishers,Dordrech, The Netherlands: 207-217.
  • Van der Meer, H.J., 1992. Constructional morphology of photoreceptor patterns in percomorph fish. Acta Biotheor. 40: 51-85.
  • Van der Meer, H.J. & G.Ch. Anker, 1984. Retinal resolving power and sensitivty of the photopic systme in seven haplochromine species (Teleostei, Cichlidae). Neth. J. Zool. 34: 197-209.
  • Van der Meer, H.J. & G.Ch. Anker, 1986. The influence of light deprivation on the development of the eye and retina in the cichlid Sarotherodon mossambicus (Teleostei). Neth. J. Zool. 36: 480-498.
  • Van der Meer, H.J., G.Ch. Anker & C.D.N. Barel, 1995. Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Env. Biol. Fish. 44: 115-132.
  • Werner, E.E., 1984. The mechanism of species interactions and community organisations in fish. In: D.R. Strong jr, D. Simberloff, L.G. Abele & A.B. Thistle. Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press, Princeton, New Jersey, USA.
  • Ali, M.A., 1975. Retinomotor responses. In : M.A. Ali (ed.). Vision in Fishes. Plenum Press, N.Y. USA: 313-355.
  • Beer, T., 1894. Die Accommodation des Fischauges. Pflügers Arch.ges.Physiol. 58 : 523-650.
  • Bowmaker, J.K., 1995. The visual pigments of fish. Progr Retinal Eye Res. 15: 1-31.
  • Fernald, R. D., 1990. The optical system of fishes. In: R. H. Douglas & M. B. A. Djamgoz (eds.). The Visual System of Fish, pp. 45-62. Chapman & Hall, London.
  • Jagger, W. S.,1992. The optics of the spherical fish lens. Vision Res. 32: 1271-1284.
  • Kröger, R. H., & R. D. Fernald, 1994. Regulation of eye growth in the African cichlid fish Haplochromis burtoni. Vision Res 34 (14): 1807-1814.
  • Kröger, R. H., M. C. W. Campbell & R. D. Fernald, 2001. The development of the cristalline lens is sensitive to visual input in the African cichlid fish Haplochromis burtoni. Vision Res. 41: 549-559.
  • Matsuda, K., S. Torisawa, T. Hiraishi, K. Nashimoto & K. Yamamoto, 2005. Visual acuity and spectral sensitivity of the elkhorn sculpin Alcichhyis alcicornis. Fish.Sc. 71: 1136-1142.
  • Matthiessen, L., 1882. Ueber die Beziehungen, welche zwischen dem Brechungsindex des Kernzentrums der Kristallinse und den Dimensionen des Auges bestehen. Pflüger’s Archiv. 27: 510-523.
  • Munk, O., 1973. Early notions of dynamic accommodatory devices in teleosts. Vidensk. Meddr. Dansk Naturh.Foren., 136: 7-28.
  • Pankhurst, P. M. & R. Eagar, 1996. Changes in visual morphology through life history stagesof the New Zealand snapper Pagrus auratus. New Zealand J.Mar.Freshwater Res. 30: 79-90.
  • Poling, K. R. & L. A. Fuiman, 1998. Sensory development and its relation to habitat changein three species of Sciaenids. Brain Behav.Evol. 52: 270-284.
  • Powers, M.K. & P.A. Raymond, 1990. Development of the visual system. In: R.H. Douglas & M.B.A. Djamgoz (eds.). The Visual System of Fish. Chapman & Hall, London, N.Y.: 419-443.
  • Sivak, J. G., 1990. Optical variability of the fish lens. In: R. H. Douglas & M. B. A. Djamgoz (eds.). The Visual System of Fish, pp. 63-80. Chapman & Hall, London.
  • Van der Meer, H. J., 1994. Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei. Brain Behav.Evol. 44: 40-49.
  • Van der Meer, H. J., 1995. Visual resolution during growth in a cichlid fish: a morphological and behavioural case study. Brain Behav. Evol. 45: 25-33.
  • Van der Meer, H.J., G.Ch. Anker & C.D.N. Barel, 1995. Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Env. Biol. Fish. 44: 115-132.
  • Witte, Frans, Henny van der Meer & Kees Barel, 2003. Door cichlidenogen bezien: het belang van het gezichtsverogen bij haplochromine cichliden voor het ontstaan en in stand houden van diversiteit. Cichlidae 29: 104-114.
  • Zygar, C. A., M. J. Lee & R. D. Fernald, 1999.Nasotemporal asymmetry during teleost retinal growth: preserving an area of specialization. J.Neurobiol. 41: 453-442.
  • Barel, C.D.N., 1983. Towards a constructional morphology of cichlid fishes (Teleostei, Peciformes). Neth. J. Zool. 33: 357-424.
  • Bouton, N., N. van Os & F. Witte, 1998. Feeding performance of Lake Victoria rock cichlids: testing predictions from morphology. J. Fish Biol. 53: 118-127.
  • Goldschmidt, T., F. Witte & J de Visser, 1990. Ecological segregation of zooplanktivorous haplochromines (Pisces, Cichlidae) from Lake Victoria. Oikos 58: 343-355.
  • Goldschmidt, T. & F. Witte, 1992. Explosive speciation and adaptive radiation of haplochromine cichlids from Lake Victoria: an illustration of the scientific value of a lost species flock. Mitt. Internat. Verein. Limnol. 23: 101-107.
  • Goldschmidt, T., F. Witte & J. Wanink, 1993. Cascading effects of the introduced Nile perch on the detritivorous / phytoplanktivorous species in the sublittoral areas of Lake Victoria. Conserv. Biol. 7: 686-700.
  • Greenwood, P.H., 1983. On Macropleurodes, Chilotilapia (Teleostei, Cichlidae) and the interrelationships of African cichlid species flocks. Bull. Br. Mus. Nat. Hist. 45: 209-231.
  • Hoogerhoud, R.J.C., F. Witte & C.D.N. Barel, 1983. The ecological differentiation of two closely resembling Haplochromis species from Lake Victoria. (H. iris and H. hiatus: Pisces, Cichlidae). Neth. J. Zool. 33: 283-305.
  • Kaufman, L. & P. Ochumba,1993. Evolutionary and conservation biology of cichlid fishes as revealed by faunal remnants in northern Lake Victoria. BioSci. 42: 46-858.
  • Maan, Martine & Machteld Verzijden, 2005. Seksuele selectie en soortvorming Cichlidae 31: 132-11.
  • Maan, M.E., K.D. Hofker, J.J.M. van Alphen & O. Seehausen, 2006. Sensory drive in cichlid speciation. Am. Nat. 167: 947-954.
  • Meyer, A., 1993. Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends Ecol. Evol. 8: 279-284.
  • Seehausen, O., 1996. Lake Victoria Rock Cichlids: Taxonomy, Ecology and Distribution. Verduyn Cichlids, Zevenhuizen, The Netherlands.
  • Seehausen, O. & J.J.M. van Alphen, 1998. The effect of male coloration and female mate choice in closely relaed Lake Victoria cichlids (Haplochromis nyereri complex). Behav. Ecol. Sociobiol. 42: 1-8.
  • Seehausen, O., J.J.M. van Alphen & F. Witte, 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808-1811.
  • Seehausen, O., F. Witte, J.J.M. van Alphen & N. Bouton, 1998. Direct mate choice is the mechanism that maintains diversity among sympatric cichlids in Lake Victoria. J. Fish Biol. 53: 37-55.
  • Van der Meer, H.J., G.Ch. Anker & C.D.N. Barel, 1995. Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Env. Biol. Fish. 44: 115-132.
  • Witte, F., 1981. Initial results of the ecological survey team of the haplochromine cichlid fishes from the Mwanza Gulf of Lake Victoria: breeding patterns, trophic and species distribution. Neth. J. Zool. 31: 175-202.
  • Witte, F., 1984. Ecological differentiation in Lake Victoria haplochromines: comparison of cichlid species flocks in African lakes. In: A.A. Echelle & I. Kornfield (eds.). Evolution of Fish Species Flocks, University of Main at Orono Press, Orono, USA, pp 155-167.
  • Witte, F., T. Goldschmidt, J. Wanink, M. van Oijen, K. Goudswaard, E. Witte-Maas & N. Bouton, 1992. The destruction of an endemic species flock: quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Envir. Biol. Fish.34: 1-28.
  • Witte, F., B.S. Msuku, J.H. Wanink, O. Seehausen, E.F.B. Katunzi, P.C. Goudswaard & T. Goldschmidt, 2000. Recovery of cichlid species in Lake Victoria: an examination of actors eading to differential extinction. Rev. Fish Biol. Fish. 10: 233-241.
  • Witte, F., J.H. Wanink, H.A. Rutjes, H.J. van der Meer, & G.E.E.J.M. van den Thillaard, 2005. Eutrophication and the fish fauna of Lake Victoria. In: V.M. Reddy (ed.). estoration and Management of Tropical Eutrophic Lakes. Science Publishers, Inc., Enfield, USA. pp. 301-338. 
  • Witte, F., J.H. Wanink, M. Kishe-Machumu, O.C. Mkumbo, P.C. Goudswaard & O. Seehausen, 2007. Differential decline and recovery of haplochromine trophic groups in the Mwanza Gulf of Lake Victoria. Aquat. Ecosyst. Health Management 10: 416-433.
  • Ahlbert, I.B., 1969. The organisation of the cone cells in the retinae of four teleosts wit different feeding habits (Perca fluviatalis L., Lucioperca lucioperca L., Acerina cernua L. and Coregonus albua L.). Acta Zool. 22: 445-480.
  • Ahlbert, I.b., 1975. Organization of the cone cells in the retina of salmon (Salmo salar) and trout (Salmo trutta trutta) in relation to their feeding habits. Acta Zool. 57: 13-35.
  • Ali, M.A. & I. Hanyu, 1963. A comparative study of retinal structure in some fishes from moderately deep waters of the western North Atlantic. Can. J. Zool. 41: 225-241.
  • Ali, M.A. & M. Anctil, 1976. Retinas of Fishes. Springer Verlag, New York, USA.
  • Ali, M.A. & N.A. Klyne, 1985. Phylogeny and functional morphology of the vertebrate retina. In: H.R. Duncker & G. Fleisher (eds.). Functional Morphology in Vertebrates. Proceedings of the 1st International Symposium on Vertebrate Morphology, Giessen, 1983, Gustav Fischer Verlag, Stutgard, Germany. pp. 633-648.  
  • Barel, C.D.N., 1993. Concepts of an architectonic approach to transformation morphology. Acta Biotheor. 41: 345-381.
  • Barel, C.D.N., M.J.P. van Oijen, F. Witte & E.L.M. Witte-Maas, 1977. An introduction to the taxonomy and morphology of the haplochromine cichlidae from Lake Victoria. Neth. J. Zool. 27: 333-389.
  • Boehlert, G.W., 1978. Intraspecific evidence for the function of single and double cones in the teleost retina. Science 202: 309-311.
  • Boehlert, G.W., 1979. Retinal development in postlarval through juvenile Sebastes diploproa: adaptations to a changing photic environment. Rev. Can. Biol. 38: 265-280.
  • Bowmaker, J.K., 1995. The visual pigments of fish. Prog. Ret. Eye Res. 15: 1-31.
  • Bowmaker, J.K. & Y.W. Kunz, 1987. Ultraviolet receptors, tertrachromatic colour vision and retinal mosaics in the brown trout(Salmo trutta): age-dependent changes. Vision Res. 27: 2101-2108.
  • Cheng, C.L. & I. Novales Flamarique, 2007. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development. J. Exp. Biol. 210: 4123-4135.
  • Engström, K., 1963. Cone types and cone arrangements in teleost retinae. Acta Zool. 44: 179-243.
  • Fernald, R.D., 1985. Growth of the teleost eye: novel solutions to complex constraints. Env. Biol. Fish 13: 113-123.
  • Fritsches, K.A., J.C. Partridge, J.D. Pettigrew & N.J. Marshall, 2000. Colour vision in Billfish. Philosophical Transactions: Biological Sciences, Vol. 355, No. 1401, Sensory Processing of the Aquatic Environment. pp. 1253-1256.
  • Fritsches, K.A., L. Litherland, N. Thomas & J. Shand, 2003. Cone visual pigments and retinal mosaics in the striped marlin. J. Fish Biol. 63: 1347-1351.
  • Fryer, G. & T.D. Iles, 1972. The Cichlid Fishes of the Great Lakes of Africa. Olier & Boyd, Edingburgh, UK.
  • Guma’a, S.A., 1982. Retinal development and retinomotor responses in perch, Perca fluviatilis L. J. Fish Biol. 20: 618.
  • Hawryshyn, C.W., 2000. Ultraviolet polarization vision in fishes:possible mechanism for coding e-vector. Philosophical Transactions: Biol. Sciences Vol. 355, No. 1401, Sensory Processing of the Aquatic Environment, pp. 1187-1190.
  • Johns, P.A. & R.D. Fernald, 1981. Genesis of rods in teleost fish retina. Nature, 293: 141-142.
  • Johns, P.A., 1981. Growth of fish retinas. Am. Zool. 21: 447-458
  • Kleinbaum, D.G & L.L. Kupper, 1978. Applied Regression Analysis and Other Multivariable Methods. Duxbury Press, North Scituate, Massachusetts, USA. pp 188-192.
  • Kock, J.-H., 1982. Neuronal addition and retinal expansion during growth of the crucian carp eye. J. Comp. Neurol. 209: 264-274.
  • Kornfield, I., 1990. Genetics. In: M.A.H. Keenlyside ed). Cichlid Fishes, Behaviour, Ecology an Evolutions. Chapman & Hall, London, UK. pp. 103-128.
  • Kusmic, C. & P. Gualtieri, 1999. Morphology and spectral sensitivities of retinal and extraretinal photoreceptors in freshwater teleosts. Micron 31: 183-200.
  • Levine, J.S., 1985. The vertebrate eye. In: M. Hildebrand, D.M. Bramble, F.K. Liem & D.B. Wake (eds.). Functional Vertebrate Morphology. The Belknap Press of Harvard University Press, Cambridge, Mass. USA. pp. 317-337.
  • Levine, J.S. & E.F. MacNichol, 1979. Visual pigments in teleost fishes: effects of habitats, microhabitats and behaviour on visual system evolution. Sens. Proc. 3: 95-131.
  • Li, W. & S.H. DeVries, 2004. Separate blue and green cone networks in the mammalian retina. Nature Neuroscience 7: 751-756.
  • Loew, E.R. & J.N. Lythgoe, 1978. The ecology of cone pigments in teleost fishes. Vision Res. 18: 715-722.
  • Lyall, A.H., 1957. Cone arrangements in teleost retinae. Quart. J Micr. Sci. 98: 189-201.
  • Lythgoe, J.N., 1968. Visual pigments and visual range underwater. Vision Res. 8: 997-1012.
  • Lythgoe, J.N., 1979. Ecology of Vision. Clarendon Press, Oxford, UK.
  • McFarland, W.N. & F.W. Munz, 1975. The evolution of photopic visual pigments in fishes. Vision Res. 15: 1071-1080.
  • Mack, A.F., 2006. Evidence for a columnar organization of cones, Müller cells, and neurons in the retina of a cichlid fish. Neuroscience 144: 1004-1014.
  • Müller, H., 1952. Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zool. Jahrbuchen 63: 275-324.
  • Munz, F.W. & W.N. McFarland, 1977. Evolutionary adaptations of fishes to the photic environment. In: F. Crescitelli (ed.). The Visual System in Vertebrates, Handbook of Sensory Physiology VII/5, Springer Verlag, Berlin, Germany. pp 193-274.
  • Nag, T.C. & J. Bhattacharjee, 2004. Retinal cytoarchitecture in some mountain-stream teleosts of India. Env. Biol. Fish. 63: 435-449.
  • Noakes, D.L.G. & J.-G.J. Godin, 1988. Ontogeny of behaviour and concurrent developmental changes in sensory systems in teleost fishes. Fish Physiol. XIB: 345-394.
  • Noorlander, C., 1986. Deplasticizing of thick EPON sections involving a new adhesive technique and staining of nervous tissue. Acta Morph. Neerl.-Scand. 24: 133-138.
  • Novales Flamarique, I., 2001. Gradual and partial loss of corner cone-occupied area in the retina of rainbow trout. Vision Res. 41: 3073-3082.
  • Otten, E., 1981.Vision during growth of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Neth. J. Zool. 31: 650-700.
  • Powers, M.K. & P.A. Raymond, 1990. Development of the visual system. In: R.H. Douglas & M.B.A. Djamgos (eds.). The Visual System of Fish. Chapman & Hall, pp. 419-442.
  • Reckel, F., R.R. Melzer & U. Smola, 2001. Outer retinal fine structure of the garfish Belone belone (L.) (Belonidae, Teleostei) during light and dark adaptation – photoreceptors, cone patterns and densities. Acta Zool. 82: 89-105.
  • Reckel, F., R.R. Melzer,J.W.L. Parry & J.K. Bowmaker, 2002. The retina of five Atherinomorph Teleosts: photoreceptors, patterns and spectral sensitivities. Brain Behav. Evol. 60: 249-264.
  • Reckel, F., B. Hoffmann, R.R. Melzer, J. Horppila & U. Smola, 2003. Photoreceptors and cone patterns in the retina of the smelt Osmerus eperlanus (L.) (Osmeridae: Teleostei). Acta Zool. 84: 161-170.
  • Sage, R.D., P.V. Poiselle, P. Basasibwaki & A.C. Wilson, 1984. Molecular versus morphological change among cichlid fishes from Lake Victoria. In: A.A. Echelle & I. Kornfield (eds.). Evolution of Fish Specie Flocks. University of Maine at Orono Press, Orono, USA. pp.185-197
  • Scholes, J.H., 1976. Neuronal connections and cellular arrangement in the fish retina. In: F. Zettler & R. Weiler (eds.). Neural Principles in Vision. Springer Verlag, Berlin. pp. 63-93.
  • Sivak, J.G., 1990. Optical variability of the fish lens.  In: R.H. Douglas & M.B.A. Djamgoz (eds). The Visual System of Fish. Chapman & Hall, London, N.Y. pp 63-80.
  • Snyder, A.W., 1975. Photoreceptor optics – theoretical principles. In: A.W. Snyder & R. Menzel (eds.). Photoreceptor Optics. Springer Verlag, Berlin, N.Y. pp 38-55.
  • Van der Meer, H.J., 1991. Ecomorphology of photoreception in haplochromine cichlid fishes. Thesis, Leiden University, The Netherlands.
  • Van der Meer, H.J., 1992. Constructional morphology of photoreceptor patterns in percomorph fish. Acta Biotheor. 40: 51-85.
  • Van der Meer, H.J., 1993. Light induced modulation of retinal development in the cichlid fish Haplochromis sauvagei (Pfeffer, 1896). Zool. J. Linn. Soc. 108: 271-285.
  • Van der Meer, H.J., 1994. Ontogenetic change of the visual threshold in the cichlid fish Haploromis sauvagei. Brain Behav. Evol. 44: 40-49.
  • Van der Meer, H.J., 1995. Visual resolution during growth in a cichlid fish: a morphological and behavioural case study. Brain Behav. Evol. 45: 25-33.
  • Van der Meer, H.J. & G.Ch. Anker, 1984. Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Teleostei, Cichlidae). Neth. J. Zool. 34: 197-209.
  • Van der Meer, H.J. & G.Ch. Anker, 1986. The influence of light deprivation on the development of the eye and retina in the cichlid Sarotherodon mossambicus (Teleostei). Neth. J. Zool. 36: 480-498.
  • Van der Meer, H.J., G.Ch. Anker & C.D.N. Barel, 1995. Ecomorphology of retinal structures in zooplanktivrous haplochromine cichlids (Pisces) from Lake Victoria. Envir. Biol. Fish. 44: 115-132.
  • Van der Meer, HJ. & J.K. Bowmaker, 1995. Interspecific variation of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav. Evol. 45: 232-240.
  • Verheyen, E., J. van Rompaey & M. Selens, 1985. Enzyme variation in haplochromine cichlid fishes from Lake Victoria. Neth. J. Zool. 35: 469-478.
  • Wagner, H.-J., 1972. Vergleigende Untersuchungen über das Muster der Sehzellen und Horizontalen in der Teleostier-Retina (Pisces). Z. Morph. Tiere 72: 77-130.
  • Wagner, H.-J., 1978. Cell types and connectivity patterns in mosaic retinas. Adv. Anat. Embryol. Cell Biol. 5: 1-81.
  • Wagner, H.-J., 1990. Retinal structure of fishes. In: R.H. Douglas & M.B.A. Djamgoz (eds). The Visual System of Fish. Chapman & Hall, London, N.Y. pp 109-158.
  • Witte, Frans, Henny van der Meer & Kees Barel, 2003. Door cichlidenogen bezien: het belang van het gezichtsvermogen bij haplochromine cichlden oor het ontstaan en in stand houden van diversiteit. Cichlidae 29: 104-114.
  • Witte, F., J. H. Wanink, H. A. Rutjes, H. J. van der Meer & G. E. E. J. M. van den Thillart. 2005. Eutrophication and its influences on the fish fauna of Lake Victoria. In: M.V. Reddy, ed. Restoration and Management of Tropical Eutrophic Lakes. Science Publ. Inc. Enfield, USA : 301-338
  • Allen, E.E. & R.D. Fernald, 1985. Spectral sensitivity of the African cichlid fish, Haplochromis burtoni. J. Comp. Physiol. 157: 247-253.
  • Baburina,, E.A., P.B. Bogatyrev & V.R. Protasov, 1968. A study of age variation of acuity of sight of some fish. Zool. Zh. 47: 1364-1369.
  • Baerends, G.P., B.E. Bennema & A.A. Vogelzang, 1960. Über die Änderung der Sehscharfe mit dem Wachstum bei Aequidens portaegrensis (Hensel) (Pisces, Cichlidae). Zool. Jb. Allg. Syst. Oko. 88: 67-78.
  • Barel, C.D.N., M. J. P. van Oijen, F. Witte & E. L. M. Witte-Maas, 1977. An introduction to the taxonomy and morphology of the haplochromine cichlidae from Lake Victoria. Neth. J. Zool. 27: 333-389
  • Browman, H. I., W. C. Gordon, B, I. Evans & W. J. O’Brien, 1990. Coorelation between histological and behavioural measures of visual acuity in a zooplanktivorous fish, the white crappie (Pomoxis annularis). Brain Behav. Evol. 35: 85-97.
  • Brunner, G., 1934. Über die Sehscharfe der Elritze (Phoxinu leavis) bei verschiedenes Helligkeiten. Z. Vergleich. Physiol. 21: 296-316.
  • Cark, D.T., 1981.  Visual responses in developing zebrafish (Brachydanio rerio) PhD thesis, Universty of Oregon, USA.
  • Carleton, K. L. & T. D. Kocher, 2001. Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol. Biol. Evol. 18: 1540-1550.
  • Cheng, M. & J.S. Outerbridge, 1975. Optokinetic nystagmus during selective retinal stimulation. Exp. Brain Res. 23: 129-139.
  • Collewijn, H., 1977. Eye- and head movements in freely moving rabbits. J. Physol. 266: 471-498.
  • Crozier, W.J. & E. Wolf, 1940. The flicker response curve for Fundulus. J. Gen. Physiol. 23: 677-694.
  • Dobberfuhl, A.P., J.F.P. Ullmann & C.A. Shumway, 2005. Visual acuity, environmental complexity, and social organization in African cichlid fishes. Behav. Neurosc. 119: 1648-1655.
  • Douglas, R.H. & C.W. Hawryshyn, 1990. Behavioural studies of fish vision: an analysis of visual capabilities. In: R.H. Douglas & M.B.A. Djamgoz (eds.). The Visual System of Fish. Chapman & Hall, London, N.Y.: 373:418.
  • Fernald, R.D., 1988. Aquatic adaptations in fish eyes. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (eds.). Sensory Biology of Aquatic Animals. Springer Verlag, N.Y., USA. pp. 435-466.
  • Fryer, G. & T.D. Iles, 1972. The Cichlid Fishes of the Great Lakes of Africa. Oliver & Boyd, Edingburgh, UK.
  • Goldschmidt, T., F. Witte & J. de Visser, 1990. Ecological segregation of zooplanktivorous haplochromines (Pisces, Cichlidae) from Lake Victoria.  Oikos 58: 343-355.
  • Hairston, N.G. K.T. Li & S.S. Easter, 1982. Fish vision and the detection of planktonic prey. Science 218: 1240-1242
  • Hodos, W. & N.M. Yolen, 1976. Bahavioral correlates of tectal compression in goldfish II. Visual acuity. Brain Behav. Evol. 13: 468-474.
  • Kawamura, G., Y. Mukai & H. Ohta, 1984. Change in the visual threshold with development of rods in Ayu (Plecoglossus altivelis). Bull. Jap. Soc. Sci. Fish. 50 : 2133.
  • Kröger, R.H.H., B Knoblauch & H-J. Wagner, 2003. Rearing in different photic and spectral environments changes the optomotor response to chromatic stimuli in the cichlid fish Aequidens pulcher. J. Exp. Biol. 206: 1643-1648.
  • Li, K.., J.K. Wetterer & N.G. Hairston, 1985. Fish size, visual resolution and prey selectivity. Ecology 66: 1729-1735.
  • Maan, M.E., K.D. Hofker, J.J.M. van Alphen & O. Seehausen, 2006. Sensory drive in cichlid speciation. Am. Nat. 167: 947-954.
  • Meyer, A., 1986. Changing in behaviour with increasing experience with a novel prey in fry of the Central American cichlid, Cichlasoma manguense (Pisces, Cichlidae): morphology versus behavior. Env. Biol. Fish.18: 127-134.
  • Mussi, M., T.J. Haimberger & C.J. Hawryshyn, 2005. Behavioural discrimination of polarized light in the damselfish Chromis viridis (family Pomacentridae) J. Exp. Biol. 208: 3037-3046.
  • Nakamura, E.L., 1968. Visual acuity of two tunas, Katsuwonus pelamis and Euthynus affinus. Copeia 1: 41-49.
  • Neumeyer, C., 1984. On spectral sensitivity in the goldfish. Evidence for neural interactions between different “cone mechanisms”. Vision Res. 24: 1223-1231.
  • Northmore, D.P.M., 1968. A simple live-worm dispenser. J. Exp. Anal. Behav. 11: 617-618.
  • O’Brien, W. J., 1979. The predator-prey interaction of planktivorous fish and zooplankton. Am. Sci. 67: 572-581.
  • Otten, E., 1981. Vision during growth of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Neth. J. Zool. 31: 650-700.
  • Penzlin, H. & M. Stubbe, 1977. Untersuchungen zur Sehscharfe des Goldfishes (Carassius auratus L.). Zool. Jb. Bd. 81: 310-326..
  • Risner, M.L., E. Lemerise, E.V. Vukmanic & A. Moore, 2006. Behavioural spectral sensitivityof the zebrafish (Danio rerio). Vision Res. 46:2625-2635.
  • Sokal, R.R. & F.J. Rohlf, 1973. Introduction to Biostatistics. W.H. Freeman & Co., San Fransisco, USA.
  • Spady, T. C., O. Seehausen, E. R. Loew, R. C. Jordan, T. D. Kocher & K. L. Carleton, 2005. Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol. Biol. Evol. 22:1412-1422.
  • Terai, Y., W. E. Mayer, J. Klein, H. Tichy & N. Okada, 2002. The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proc.Natl.Acad.Sci.USA. 99: 15501-15506.
  • Van der Meer, H.J., 1991.Determination of photopic thresholds in two sympatric cichllids using optomotor response. Mus. Roy. Afr. Centr. Sc. Zool. 263: 91-96.
  • Van der Meer, H.J., 1994. Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei. Brain Behav. Evol. 44: 40-49.
  • Van der Meer, H.J., 1995. Visual resolution during growth in a cichlid fish: a morphological and behavioural case study. Brain Behav. Evol. 45: 25-33.
  • Van der Meer, H. J., G. Ch. Anker & C. D. N. Barel, 1995. Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Environm. Biol. Fish. 44: 115-132.
  • Van der Meer, H. J. & J. K. Bowmaker, 1995. Interspecific variation of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav. Evol. 45: 232-240.
  • Witte, F., C.D.N. Barel & R.J.C. Hoogerhoud, 1990. Phenotypic plasticity of anatomical structures and its ecomorphological significance. Neth. J. Zool. 40: 278-298.
  • Yamanouchi, T., 1957. The visual acuity of the coral fish Microcanthus strigatus (Cuvier & Valenciennes). Publ. Sto Mar. Biol. Lab. V: 133-156.
  • Bowmaker, J.K., 1990. Visual pigments of fishes. In: R.H. Douglas & M.B.A. Djamgoz (eds.). The Visual System of Fish. Chapman & Hall, London, UK. pp 81-104.
  • Brakefield, P.M., 1998. The regulation of  phenotypic plasticity of eye-spots in the butterfly Bicyclus anynana. Am. Nat. 152: 853-860.
  • Carleton, K.L., J.W.L. Parry, J.K. Bowmaker, D.M. Hunt & O. Seehausen, 2005. Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Mol. Ecol. 14: 4341-4353.
  • DeWitt, T.J. & S.M. Scheiner, 2004. Phenotypic Plasiticity: Functional and Conceptual Approaches. Oxford University Press, UK.
  • Goldschmidt, T., F. Witte & J. de Visser, 1990. Ecological segregation of zooplanktivorous haplochromines (Pisces, Cichlidae) from Lake Victoria. Oikos 58: 343-355.
  • Grün, G., 1979. Light-induced acceleration of retina development in a mouth-brooding teleost. J. Exp. Zool. 208: 291-302.
  • Grün, G., 1980. Further evidence for visual cell independent light effect on retina development in Tilapia leucosticta (Teleostei). J. Exp. Zool. 211: 415-417.
  • Kleinbaum, D.G. & L.L. Kupper, 1978. Applied Regression Analysis and other Multivariable Methods. Duxbury Press, Massachusetts, USA.
  • Kröger, R.H.H., J.K. Bowmaker & H.J. Wagner, 1999. Morphological chages in the retina of Aequidens pulcher (Cichlidae) after rearing in monochromatic light. Vision Res. 39: 2441-2448.
  • Marchiofava, P.L., 1985. Cell coupling in double cones of the fish retina. Proc. R. Soc. Lond. B 226 : 211-215.
  • Miner, B.G., S.E. Sultan, S.G. Morgan, D.K. Padilla & R.A. Relyea, 2005. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20: 685-692.
  • Otten, E., 1981. Vision during growth of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Neth. J. Zool. 31: 650-700.
  • Price, T.D., A. Qvarnström & D.E. Irwin,  2003. The role of phenotypic plasticity in driving genetic evolution. Proc. Roy. Soc. B: Biol. Sci. 270: 1433-1440.
  • Raymond, P.A., C.J. Bassi & M.K. Powers, 1988. Lighting conditions and retinal development in goldfish. Photoreceptor number and structure. Invest. Ophthalmol. Vis. Sci. 29: 27-36.
  • Schlichting, C.D., 1986. The evolution of phenotypic plasticity in plants. An. Rev. Ecol. Syst.17: 667-693.
  • Smith-Gill, S.J., 1983. Developmental plasticity: developmental conversion versus phenotypic modulation. Am. Zool. 23: 47-55.
  • Sollid, J., P. De Angelis, K. Gunderson & G.E. Nilsson, 2003. Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. J. Exp. Biol. 206: 3667-3673.
  • Stearns, S.C., 1989. The evolutionary significance of phenotypic plasticity. BioScience 39: 436-445.
  • Van der Meer, H.J., 1989. Ecological significance of retinal receptor patterns in four sympatric haplochromine cichlids. Anal. Scs. Zool. Mus. Roy. Afr. Centr. 257: 51-56.
  • Van der Meer, H.J., 1993. Light-induced modulation of retinal development in the cichlid fish Haplochromis sauvagei (Pfeffer, 1896). Zool. J. Linn. Soc. 108: 271-285.
  • Van der Meer, H.J. & G.Ch. Anker, 1986. The influence of light deprivation on the development of the eye and retina in the cichlid Sarotherodon mossambicus (Teleostei). Neth. J. Zool. 36: 480-498.
  • Van der Meer, H. J. & J. K. Bowmaker, 1995. Interspecific variation of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav. Evol. 45: 232-240.
  • Witte, F., C.D.N. Barel & R.J.C. Hoogerhoud, 1990. Phenotypic plasticity of anatomical structures and its ecomorphological significance. Neth. J. Zool. 40: 278-298.
  • Zeutzius, I. & H. Rahmann, 1984. Influence of dark-rearing on the ontogenetic development of Sarotherodon mossambicus (Cichlidae, Teleostei): Effects on body weight, body growth pattern, swimming activity and visual acuity. Exp. Biol. 43: 77-85.
  • Zeutzius, I., W. Probst & H. Rahmann, 1984. Influence of dark-rearing on the ontogenetic development of Sarotherodon mossambicus (Cichlidae, Teleostei): Effects on allometrical growth relations and differentiation of the optic tectum. Exp. Biol. 43: 87-96.
  • Bowmaker, J.K., 1990. Visual pigments of fishes. In: R.H. Douglas & M.B.A. Djamgoz (eds.). The Visual System of Fish. Hapman & Hall, London, UK. pp. 81-108.
  • Bowmaker, J.K., 1991. Visual pigments, oil droplets and photoreceptors. In; P. Gouras (ed.). The Perception of Colour Vision and Visual Dysfunction. Vol.6. Macmillan Press, London, UK. pp. 108-127.
  • Bowmaker, J.K., 1995. The visual pigments of fish. Progr. Retinal Eye Res.15: 1-31.
  • Bowmaker, J.K., S. Astell, D.M. Hunt & J.D. Mollon, 1991. Photosensitive and photostable pigments in the retinae of Old World monkeys. J. Exp. Biol. 156: 1-19.
  • Bridges, C.D.B., 1972. The rhodopsin-porphyropsin visual system. In: H.J.A. Dartnall (ed.). Handbook of Sensory Physiology. Vol. VII/I. Springer Verlag, Berlin. pp. 417-480.
  • Carleton, K.L., J.W.L. Parry, J.K. Bowmaker, D.M. Hunt & O. Seehausen, 2005. Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Mol. Ecol. 14: 4341-4353.
  • Crescitelli, F., M. McFall-Ngai & J. Horwitch, 1985. The visual pigment sensitivity hypothesis: further evidence from fishes of varying habitats. J. Comp. Physiol. A: Neuroeth., Sens., Neur., Behav. Physiol. 157: 323-333.
  • Dartnall, H.J.A., J.K. Bowmaker  & J.D. Mollon, 1983. Human visual pigments: microspectrophotometric resuls from the eyes of seven persons. Proc. Roy. Soc. London, B 220: 115-130.
  • Fernald, R.D. & P.A. Liebman, 1980. Visual receptor pigments in the African cichlid fish Haplochromis burtoni. Vision Res. 20: 857-864.
  • Foster, R.G., 2005. Neurobiology: bright blue times. Nature 433: 698-699.
  • Goldschmidt, T., F. Witte & J. de Visser, 1990. Ecological segregation of zooplanktivorous haplochromines (Pisces, Cichlidae) from Lake Victoria. Oikos 58: 343-355.
  • Goldsmith, T.H., 1990. Optimization, constraint, and history in the evolution of eyes. Quart. Rev. Biol. 65: 281-322.
  • Hárosi, F.I., 1994. An analysis of two spectral properties of vertebrate visual pigments. Vision Res. 34: 1359-1367.
  • Hilbert, D.R., 1992. What is color vision?. Philos. Stud. 68: 351-370.
  • Hurvich, L.M. & D. Jameson 1960. Perceived color, induction effects, and opponent-response mechanisms. J. Gen. Physiol. 43: 63–80.
  • Knowles, A. & H.J.A. Dartnall, 1977. The photobiology of vision. In: H. Davson (ed.). The Eye. Vol. 2B. Academic Press, London, UK.
  • Kocher, T.D., 2004. Adaptive evolution ad explosive speciation: the cichlid fish model. Nat. Rev. Gen. 5: 288-298.
  • Levine, J.S. & E.F. MacNichol, 1979. Visual pigments in teleost fishes: effects of habitats, microhabitats and behaviour bon visual system evolution. Sens. Proc. 3: 95-131.
  • Liebman, P.A. & G. Entine, 1964. Sensitive low-light level microspectrophotometer detection of photosensitive pigments of retinal cones. J. Opt. Soc. Am. 54: 1451-1459.
  • Lythgoe, J.N. & J.C. Partridge, 1989. Visual pigments and the acquisition of visual information. J. Exp. Biol. 146: 120.
  • Mansfield, R.J.W., 1985. Primate photopigments and cone mechanisms. In: J.S. Levine & A. Fein (eds.). The Visual System. Alan Liss, New York, USA. pp. 89-106.
  • Maan, M.E., K.D. Hofker, J.J.M. van Alphen & O. Seehausen, 2006.Sensory drive in cichlid speciation. Am. Nat. 167: 947-954.
  • Marchiofava, P.L., 1985. Cell coupling in double cones of the fish retina. Proc. R. Soc. Lond. B 226 : 211-215.
  • Martinez, F, M.J. Luque, J. Malo,A. Felipe & J.M. Artigas, 1997. Implementations of a novel algorithm for colour constancy. Vision Res. 37 : 1829-184.
  • Masland, R.H.,1996. Unscrambling color vision. Science 271: 616-617.
  • Mollon, J.D., J.K. Bowmaker & G.H. Jacobs, 1984. Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc. R. Soc. Lond. B 222 : 373-399.
  • Muntz, W.R.A., 1975. Visual pigments and the environment. In: M.A. Ali (ed.). Vision in Fishes. Plenum Press, New York, USA. pp. 565-578.
  • Munz,  F.W., & W.N. McFarland, 1977. Evolutionary adaptations of fishes to the photic environment. In: F. Crescitelli (ed.). Handbook of Sensory Physiology. Vol. VII/5 The Visual System in Vertebrates. Springer Verlag, New York, USA. pp.193-274.
  • Matthen, M., 1992. Color vision: content versus experience. Open peer commentary on Thompson et al. 1992. Behav. Brain Sci. 15: 46-47.
  • Neumeyer, C., 1991. Evolution of colour vision. In: J.R. Cronly-Dillon & R.L. Gregory (eds.). Evolution of the Eye and Visual System: Vision and Visual Dysfunction. Vol. 2. Macmillan Press, London, UK. pp. 284-305.
  • Nuboer, J.F.W., 1986. A comparative view on colour vision. Neth. J. Zool. 36: 344-380.
  • Parry, J.W.L., K.L. Carleton, T. Spady, A. Carboo, D.M. Hunt & J.K. Bowmaker, 2005. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Current Biol. 15: 1734-1739.
  • Seehausen, O., 1997. Distribution and reproductive isolation among color morphs of a rock-dwelling Lake Victoria cichlid (Haplochromis nyererei). Ecol. Freshwater Fish 6: 59-66.
  • Seehausen, O & J.J. van Alphen, 1998.The effect of male coloration on female mate choice in closely relad Lake Victora cichlids (Haplochromis nyererei complex). Behav. Ecol. Sociobiol. 42: 1-8.
  • Shepard, R.N., 1990. A possible evolutionary basis for trichromacy. In: Percieving, Measuring, and Using Color. Proceedings of the SPIE/SPSE Symposium on Electronic Imaging: Sci. Technol. 1250: 301-309.
  • Smit, S.A. & G.Ch. Anker, 1997. Photopic sensitivity to red and blue light related to retinal differences in two zooplanktivorous haplochromine species (Teleostei, Cichlidae). Neth. J. Zool. 47: 9-20.
  • Stell, W.K., L. Barton, T. Ohtsuka & J. Hirano, 1994. Chromatic and neurochemical  correlates of synapses between cones and horizontal cells. In: R.J. Olson & E.M. Lasater (eds.).  Great Basin Visual Science Symposium. Univ. Utah, Salt Lake City, USA. pp. 41-48.
  • Terai, Y., W.E. Mayer, J. Klein, H. Tichy & N. Okada, 2002. The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. PNAS 99: 15501-15506.
  • Thompson, E., 1995. Colour vision, evolution, and perceptual content. Synthes 104: 1-32.
  • Van der Meer, H.J., G.Ch. Anker & C.D.N. Barel, 1995. Ecomorphology of retinal structures in zooplanktivorous haplohromine cichlids (Pisces) from Lake Victoria. Env. Biol. Fish. 44: 115-132.
  • Van der Meer, H.J. & J.K. Bowmaker, 1995. Interspecific variation of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav. Evol. 45: 232-240.
  • Verweij, J., M. Kamermans, E.C. van den Aker & H. Spekreijse,1996. Modulation of horizontal cell receptive fields in the light adapted goldfish retina. Vision Res. 36: 3913-3923.
  • Witte, F., 1981. Initial results of the ecological survey of the haplochromine cichlid fishes from the Mwanza Gulf of Lake Victoria: breeding patterns, trophic and species distribution. Neth. J. Zool. 31: 175-202.
  • Yokoyama, S., 1995. Amino acid changes and wavelength absorption of visual pigments in vertebrates. Mol. Biol. Evol. 12: 53-61.
  • Bouton, N., J. de Visser & C.D.N. Barel, 2002. Correlating head shape with ecological variables in rock-dwelling haplochromines (Teleostei : Cichlidae) from Lake Victoria. Biol J. Linn. Soc. 76: 39-48.
  • Chapman, L.J., L.S. Kaufman, C.A. Chapman & F.E. McKenzie, 1995. Hypoxia tolerance in twelve species of East African cichlids: Potential for low oxygen refugia in Lake Victoria. Conserv. Biol. 9: 1274-1288.
  • Chapman, L.J., F. Galis & J. Shinn, 2000. Phenotypic plasticity and the possible role of genetic assimilation: Hypoxia-induced trade-offs in the morphological traits of an African cichlid. Ecol. Lett. 3: 387-393.
  • Chapman, L.J., C.A. Chapman, F.G. Nordlie & A.E. Rosenberger, 2002. Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region. Comp. Biochem. Physiol. A 133: 421-437.
  • Fryer, G. & T.D. Iles, 1972. The Cichlid Fishes of the Great Lakes of Africa: Their Biology and Evolution. Oliver & Boyd. Edinburgh, UK.
  • Goldschmidt, T., F. Witte & J. Wanink, 1993. Cascading effects of the introduced Nile perch on the detritivorous/phytoplanktivorous species in the sublittoral areas of Lake Victoria. Conserv. Biol. 7:686-700.
  • Kranenbarg, S., M. Muller, J.L.W. Gielen & J.H.G. Verhagen, 2000. Physical constraints on body size in teleost embryos. J. Theor. Biol. 204: 113-133.
  • Rutjes, H.A., 2006. Phenotypic responses to lifelong hypoxia in cichlids. Thesis. Leiden University, The Netherlands.
  • Seehausen, O., J.J.M. van Alphen & F. Witte, 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808-1811.
  • Seehausen, O., F. Witte, E.F. Katunzi, J. Smits & N. Bouton, 1998. Direct mate choice is the mechanism that maintains diversity among sympatric cichlids in Lake Victoria. J. Fish Biol. 53: 37-55.
  • Seehausen, O., J.J.M. van Alphen & F. Witte, 2003. Implications of eutrophication for fish vision, behavioural ecology and species coexistence: a theoretical framework. In: T.L. Crisman, L. Chapman, C. Chapman & L.S. Kaufman (eds.). Conservation, Ecology and Management of African Fresh Waters. University Press of Florida, USA. pp. 268-287.
  • Van der Meer, H.J., G.Ch. Anker & C.D.N. Barel, 1995.Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Env. Biol. Fish. 44: 115-132.
  • Witte, F., J.H. Wanink, H.A. Rutjes, H.J. van der Meer & G.E.E.J.M. van den Thillart, 2005. Eutrophication and its influences on the fish fauna of Lake Victoria. In: M. Vikram Reddy (ed.). Restoration and Management of Tropical Eutrophic Lakes. Science Publ. Inc., Enfield, USA. pp. 301-338.
  • Witte, F, J.H. Wanink, M. Kishe-Machumu, O.C. Mkumbo, P.C. Goudswaard & O. Seehausen, 2007. Differential decline and recovery of haplochromine trophic groups in the Mwanza Gulf of Lake Victoria. Aquat. Ecosyst. Health & Management. 10: 416-433.
  • Witte, F., M. Welten, M. Heemskerk, I. van der Stap, L. Ham, C. Rutjes & J. Wanink,  2008. Major morphological changes in a Lake Victoria cichlid fish within two decades. Biol. J. Linn. Soc. 93: 1-12.
  • Barel, C.D.N.,  M.J.P. van Oijen, F. Witte, & E.L.M. Witte-Maas, 1977. An introduction to the taxonomy and morphology of the haplochromine cichlidae from Lake Victoria. Net. J. Zool. 27: 333-389.
  • Barel, C.D.N. (1985) A matter of space. Constructional morphology of cichlid fishes. Thesis, University of Leiden.
  • Barel, C.D.N. (1993) Concepts of an architectonic approach to transformation morphology. Acta Biotheoretica 41: 345-381.
  • Bowmaker, J.K., 1995. The visual pigments of fish. Progr Retinal Eye Res. 15: 1-31.
  • Buijs, A, (1994) Statistiek om mee verder te werken. Educatieve Partners Nederland BV, Houten
  • Fernald, R.D. (1985) Growth of the teleost eye: novel solutions to complex constraints. Env. Biol. Fish 13: 113-123.
  • Fernald, R.D. (1991) Teleost vision: seeing while growing. J. Exp. Zool. Suppl. 5: 167-180.
  • Fryer, G. & Iles, T.D. (1972) The Cichlid Fishes of the Great Lakes of Africa.Oliver & Boyd, Edinburgh.
  • Guthrie, D.M. & W.R.A. Muntz, 1993. Role of vision in fish behavior. In: T.J. Pitcher (ed.). Behavior of Teleost Fishes. Chapman & Hall, London. pp. 89-128.
  • Huizingh, E. (1999) SPSS 9.0 voor Windows en Data Entry. Academic Service, Schoonhoven. Netherlands.
  • Meer, H.J. van der (1992) Constructional morphology of photoreceptor patterns in percomorph fish. Acta Biotheoretica40: 51-85.
  • Meer H.J. van der (1994) Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei (Pfeffer, 1896). Brain Behav. Evol. 44: 40-49
  • Meer, H.J. van der (1995) Visual resolution during growth in a cichlid fish: A morphological and behavioural case study. Brain Behav. Evol. 45: 25-33.
  • Meer, H.J. van der & Anker, G.Ch. (1984) Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Teleostei, cichlidae). Net. J. Zool. 34(2): 197-209.
  • Meer, H.J. van der & Anker, G.Ch. (1986) The influence of light deprivation on the development of the eye and retina in the cichlid Sarotherodon mossambicus (Teleostei). Net. J. Zool. 36(4): 480-497.
  • Meer, H.J. van der, Anker, G.Ch. & Barel, C.D.N. (1995) Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Env. Biol. Fish. 44: 115-132.
  • Meer, H.J. van der & Bowmaker, J.K. (1995) Interspecific variation of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav. Evol. 45: 232-240.
  • Meer, H.J. van der, J.C. van Rijssel, L.C. Wagenaar & F. Witte, 2012. Photopic adaptation to a changing environment in two Lake Victoria cichlids. Biol. J. Lin. Soc.  
  • Oijen, M.J.P. van & Witte, F. (1996) Taxonomical and ecological description of a species complex of zooplanktivorous and insectivorous cichlids from Lake Victoria. Zool. Verh. Leiden 302: 1-56.
  • Otten, E. (1981) Vision during growth of a generalized Haplochromis species: H. elegans Trawavas 1933 (Pisces, Cichlidae). Net. J. Zool. 31: 650-700.
  • Powers, M.K. & P.A. Raymond (1990) Development of the visual system. In: R.H. Douglas & M.B.A. Djamgoz (ed.) The Visual System of Fish. Chapman & Hall, London. pp. 419-443.
  • Sivak , J.G. (1982) Optical properties of the eyes of a flatfish, the flounder. J. Comp Physiol. 146: 345-349.
  • Welten, M. (2002) Differences in gill surfaces as a result of hypoxia in natural populations of Haplochromis pyrrhocephalus. Unpublihed data.
  • Witte, F., Goldschmidt, T., Wanink, J., Oijen, M. van, Goudswaard, K., Witte-Maas E. & Bouton, N. (1992) The destruction of an endemic species flock: quantitative date on the decline of the haplochromine cichlids of Lake Victoria. Env. Biol. Fish.. 34: 1 -28.
  • Ali, M.A., 1975. Retinomotor responses. In: M.A. Ali (ed.). Vision in Fishes. Plenum Press, N.Y.
  • Barel, C.D.N., M.J.P. van Oijen, F. Witte & E.L.M. Witte-Maas, 1977. An introduction to the taxonomy and morphology of the haplochromine cichlidae from Lake Victoria. Neth J. Zool. 27: 333-389.
  • Chapman, L.J., F. Galis & J. Shinn, 2000. Phenotypic plasiticity and the possible role of genetic assimilation: hypoxia-induced trade-offs in the morphological traits of an African cichlid. Ecol. Let. 3: 387-393.
  • Chapman, L.J., C.A. Chapman, L.S. Kaufman, F. Witte & J. Balirwa, 2008. Biodiversity conservation in Africa inland waters: Lessons of the Lake Victoria region. Verh. Int. Ver. Limn. 30: 16-34.  
  • Crispo, E. & L.J. Chapman, 2010. Hypoxia drives plastic divergence in cichlid body shape. Evol. Ecol. 25: 949-964.
  • Fryer, G. & T.D. Iles, 1974. The Cichlid Fishes of the Great Lakes of Africa. Oliver & Boyd, Edingburgh.
  • Goldschmidt, T., F. Witte & J. de Visser, 1990. Ecological segregation of zooplanktivorous haplochromines (Pisces, Cichlidae) from Lake Victoria. Oikos 58: 343-355.
  • Katunzi, E.F.B., J. Zoutendijk, T. Goldschmidt, J.H. Wanink & F. Witte, 2003. Lost zooplanktivorous cichlid from Lake Victoria reappears with a new trade. Ecol. Freshwater Fish 12: 237-240.
  • Mzigani, S.I., M. Nikaido, M. Takeda, O. Seehausen, Y.L. Budeba, B.P. Ngatunga, E.F.B. Katunzi, M. Aibara, S. Mizoiri, T. Sato, H. Tachida & N. Okada, 2010. Genetic variation and demographic history of the Haplochromis laparogramma group of Lake Victoria – An analysis based on SINEs and mitochondrial DNA. Gene 450: 39-47.
  • Otten, E., 1981. Vission during growth of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Neth. J. Zool. 31: 650-700.
  • Rutjes, H.A., M.P. de Zeeuw, G.E.E.J.M. van den Thillart & F. Witte, 2009. Changes in ventral head width, a discriminating shape factor among African cichlids, can be induced by chronic hypoxia. Biol. J. Linn. Soc. 98: 608-619.
  • Seehausen, O., J.J.M. van Alphen & F. Witte, 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808-1811.
  • Seehausen, O., J.J.M. van Alphen & F. Witte, 2000. Implications of eutrophication for fish vision, behavioral ecology and species coexistance. In: Crisman, T.L., L. Chapman & C. Chapman (eds.).Conservation, Ecology and Management of African Freshwaters. Univ. Press of Florida, USA.: 268-287.
  • Seehausen, O., J.J.M. van Alphen & F. Witte, 2003. Implications of eutrophication for fish vision, behavioural ecology and species coexistence. In: Crisman, T.L., L.J. Chapman, C.A. Chapman & L.S. Kaufman (eds.). Conservation, Ecology and Management of African Freshwaters. 268-287. Univ. Press Florida, USA.
  • Van der Meer, H.J., 1993. Light-induced modulation of retinal development in the cichlid fish Haplochromis sauvagei (Pfeffer, 1896). Zool. J. Linn. Soc. 108: 271-285.
  • Van der Meer, H.J., 1994. Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei . Brain, Behav. Evol. 44: 40-49.
  • Van der Meer, H.J., J.C. van Rijssel, L.C. Wagenaar & F. Witte, 2012. Photopic adaptation to a changing environment in two Lake Victoria cichlids. Biol. J. Lin. Soc.  
  • van der Meer, H.J. & G.Ch. Anker, 1984. Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Cichlidae, Teleostei). Neth. J. Zool. 34: 197-209.
  • van der Meer, H.J. & G.Ch. Anker, 1986. The influence of light deprivation on the development of the eye and retina in the cichlid Sarotherodon mossambicus (Teleostei). Neth. J. Zool. 36: 480-498.
  • van der Meer, H.J. & J.K. Bowmaker, 1995. Interspecific variation of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav. Evol. 45: 232-240.
  • van der Meer, H.J., G.Ch. Anker & C.D.N. Barel, 1995. Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Env. Biol. Fish 44: 115-132.
  • van der Meer, H.J., J.C. van Rijssel, L.C. Wagenaar & F. Witte, 2012. Photopic adaptation to a changing environment in two Lake Victoria cichlids. Biol. J. Lin. Soc.  
  • Van Oijen, M.J.P. & F. Witte, 1996. Taxonomical and ecological description of a species complex of zooplanktivorous and insectivorous cichlids from Lake Victoria. Zool. Verh. Leiden 302: 1-56.
  • Witte, F., 1981. Initial results of the ecological survey of the haplochromine cichlid fishes from the Mwanza Gulf of Lake Victoria: breeding patterns, trophic and species distribution. Neth. J. Zool. 31: 175-202.
  • Witte, F., T. Goldschmidt, P.C. Goudswaard, W. Ligtvoet, M.J.P. van Oijen & J.H. Wanink, 1992. Species extinction and concomitant ecological changes in Lake Victoria. Neth. J. Zool. 42: 214-232.
  • Witte, F., B.S. Msuku, J.H. Wanink, O. Seehausen, E.F.B. Katunzi, P.C. Gouswaard & T. Goldschmidt, 2000. Recovery of cichlid species in Lake Victoria: an examination of factors leading to differential extinction. Rev. Fish Biol. Fish. 10: 233-241.
  • Witte, F., M. Welten, M. Heemskerk, I. van der Stap, L. Ham, C. Rutjes & J. Wanink, 2008. Major morphological changes in a Lake Victoria cichlid fish within two decades. Biol. J. Lin. Soc. 94: 41-52.
  • Witte, F., J.H. Wanink, H.A. Rutjes, H.J. van der Meer & G.E.E.J.M. van den Thillart, 2005. Eutrophication and its influences on the fish fauna of Lake Victoria. In: M.V. Reddy (ed.). Restoration and Management of Tropical Eutrophic Lakes. Science Publ., Inc. Enfield,Plymouth, pp.301-338.
  • Barel, C. D. N., M. J. P van Oijen, F. Witte & E. L. M. Witte-Maas, 1977. An introduction to the taxonomy and morphology of the haplochromine cichlidae from Lake Victoria. Neth. J. Zool. 27: 333-389.
  • Goldschmidt, T., F. Witte & J. de Visser, 1986. Ecological segregation of zooplanktivorous haplochromines (Pisces, Cichlidae) from Lake Victoria before the Nile perch boom. Oikos 58: 356-368.
  • Seehausen, O., J. J. M. van Alphen & F. Witte, 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808-1811.
  • Seehausen, O., J. J. M. van Alphen & F. Witte, 2003. Implications of eutrofication for fish vision, behavioural ecology and species coexistence. In: T. l. Crisman, L. Chapman & C. Chapman (eds.). Conservation, Ecology and Management of African Freshwaters. Universty Press f Florida, Florida. pp. 268-287.
  • Smit, S. A. & G. Ch Anker, 1997. Photopic sensitivity to red and blue light related to retinal differences in two zooplanktivorous haplochromine species (Teleostei, Cichlidae). Neth. J. Zool. 47: 9-280.
  • Van der Meer, H. J., 1993. Light-induced modulation of retinal development in the cichlid fish Haplochromis sauvagei (Pfeffer, 1896). Zool. J. Linnean Soc.108: 271-285.
  • Van der Meer, H. J., 1994. Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei. Brain Behav. Evol. 44: 40-49.
  • Van der Meer, H. J. & G. Ch. Anker, 1984. Retinal resolving power and sensitivity of the photopic system in seven haplochromine speces (Teleostei, Cichlidae). Neth. J. Zool. 34: 197-209.
  • Van der Meer, H. J. & G. Ch. Anker, 1986. The influence of light deprivation on the development of the eye and retina in the cichlid Sarotherodon mossambicus (Teleostei). Neth. J. Zool. 36: 480-49.
  • Van der Meer, H. J. & J. K. Bowmaker, 1995. Interspecific variaton of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav. Evol. 45: 232-240.
  • Van der Meer, H. J., G. Ch. Anker & C. D. N. Barel, 1995. Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Env. Biol Fish. 44: 115-132.
  • Witte, F., T. Goldschmidt, J. Wanink, M. van Oijen, K. Goudswaard, E. Witte-Maas & N.Bouton, 1992. The destruction of an endemic species flock: quatitative data on the decline of the haplochromine cichlids of Lake Victoria. Env. Biol. Fish. 4: 1-28.
  • Witte, F., B. S. Msuku, J. H. Wanink, O. Seehausen, E. F. B. Katunzi, P. C. Goudswaard & T. Goldschmidt, 2000. Recovery of cichlid species in Lake Victoria: An examination of factors leading to differential extinction. Rev. Biol. Fish. 10: 233-241.
  • Witte, F., J. H. Wanink, . A. Rutjes, H. J. van der Meer & G. E. E. J. M. van den Thillart, 2005. Eutrophication and its influences on the fish fauna of Lake Victoria. In: M. V. Reddy (ed.) Restoration and Management of Tropical Eutrophic Lakes. Science Pub., Inc. Enfield, Plymouth. pp. 301-338.
  • Anker, G. C. & P. Dullemeijer, 1996. Transformation morphology on structures in the head of cichlid fishes. In: J. S. D. Munshi & H. M. Dutta (eds.). Fish Morphology. Horizon of New Researc, pp 1-20. Oxford & IBH Publ. Co. PVT. Ltd., New Delhi, Calcutta.
  • Atkins, R. M., 2003. Depth of field and the digital domain. http://www.photo.net/learn/optics/dofdigital/
  • Baylor, E. R. & E. Shaw, 1962. Refractive error and vision in fishes. Sc. 136: 157-158.
  • Browman, H. I., W. C. Gordon, B, I. Evans & W. J. O’Brien, 1990. Correlation between histological and behavioural measures of visual acuity in a zooplanktivorous fish, the white crappie (Pomoxis annularis). Brain Behav. Evol. 35: 85-97.
  • Carleton, K. L. & T. D. Kocher, 2001. Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol. Biol. Evol. 18: 1540-1550.
  • Cathey, W. T. & E. R. Dowski, 2002. A new paradigm for imaging systems. Appl. Optics 41: 6080-6091.
  • Douglas, R. H. & C. W. Hawrshyn, 1990. Behavioural studies of fish vision: an analysis of visual capabilities. In: R. H. Douglas & M. B. A. Djamgoz (eds.). The Visual System of Fish.pp. 373-418. Chapman & Hall, London.
  • Douglas, R. H. & N. J. Marshall, 1999. A review of vertebrate and invertebrate ocular filters. In: S. N. Archer, M. B. A. Djamgoz, E. R. Loew, J. C. Partridge & S. Vallerg. Adaptive Mechanisms in the Ecology of Visions. Pp 95-162. Kluwer Academic Publishers, Dordrecht, the Netherlands.
  • Dowski, E. R. & W. T. Cathey, 1995. Extended depth of field through wavefront coding. Appl. Optics 34: 1859-1866.
  • Dullemeijer, P. & G. A. Zweers, 1997. The variety of explanations of living forms and structures. Eur.J.Morph. 35: 354-364.
  • Fernald, R. D., 2004. Evolving eyes. Int.J.Dev.Biol 48: 701-705.
  • Fernald, R. D., 1990. The optical system of fishes. In: R. H. Douglas & M. B. A. Djamgoz (eds.). The Visual System of Fish, pp. 45-62. Chapman & Hall, London.
  • Fernald, R. D. & S. E. Wright, 1985. Growth of the visual system of the African cichlid fish Haplochromis burtoni: optics. Vision Res. 25: 155-161.
  • Fryer, G. & T. D. Iles, 1972. The cichlid fishes of the Great Lakes of Africa. Oliver & Boyd, Edingburgh. 641 pp.
  • Geisler, W.S. & D.B. Hamilton, 1986. Sampling-theory analysis of spatial vision. J. Opt. Soc. Am. A 3: 62-70.
  • Goldschmidt, T., 1996. Darwin’s Dreampond: Drama in Lake Victoria. MIT Press, Cambridge & London. 276 pp.
  • Jagger, W. S.,1992. The optics of the spherical fish lens. Vision Res. 32: 1271-1284.
  • Jagger, W S. & P. J. Sands, 1996. A wide-angle gradient index optical model of the crystalline lens and eye of the rainbow trout. Vision Res. 36: 2623-2639.
  • Kendall, D. G., 1974. Pole-seeking Brownian motion and bird navigation. J.Roy.Stat.Soc. 36: 365-417.
  • Kotrschal, K., M. J. van Staaden & R. Huber, 1998. Fish brains: evolution and environmental relationships. J. Fish Biol. 8: 1-36.
  • Losey, G. S., T. W. Crown, T. H. Goldsmith, D. Hyde, N. J. Marshall & W. N. McFarland, 1999. The UV visual world of fishes: a review. J. Fish Biol. 54: 921.
  • Otten, E., 1981. Vision during growth of a generalized Haplochromis species: H. elegans Trawavas 1933 (Pisces Cichlidae). Neth. J. Zool. 31: 650-700.
  • Puts, E., 2000. Circle of Confusion: an in depth discussion. http://www.imx.nl/photosite/technical/DoF/DoF.html
  • Scholes, J. H., 1976. Neuronal connections and cellular arrangement in the fish retina. In: Neural Principles in Vision. F. Zettler  & R. Weiler (eds.). Springer-Verlag, Berlin, pp 63-93.
  • Scroczynski, S., 1976. Die chromatische Aberration der Augenlinse der Regenbogenforelle (Salmo gairdneri Rich.). Zool. Jb. 80: 432-450.
  • Scroczynski, S., 1979. Methodischer Beitragzur Messung der Aberrationen der Kristall-Linsen de Fische. Teile I und II. Mikroskopie, 35: 189-201 and 241-257.
  • Sivak, J. G. & W. R. Bobier, 1978. Chromatic aberration of the fish eye and its effect on refractive state.  Vision Res. 18: 453-455.
  • Smith, G. & D. A. Atchison, 1997. The Eye and Visual Optical Instrument. New York: Cambridge University Press.
  • Spady, T. C., O. Seehausen, E. R. Loew, R. C. Jordan, T. D. Kocher & K. L. Carleton, 2005. Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol. Biol. Evol. 22:1412-1422.
  • Sushkin,  N. V., 1995. Depth of field calculation. http://www.dof.pcraft.com/dof.cgi
  • Terai, Y., W. E. Mayer, J. Klein, H. Tichy & N. Okada, 2002. The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proc.Natl.Acad.Sci.USA. 99: 15501-15506.
  • Van der Meer, H. J., 1992. Constructional morphology of photoreceptor patterns in percomorph fish. Acta Biotheor. 40: 51-85.
  • Van der Meer, H. J., 1994. Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei. Brain Behav.Evol. 44: 40-49.
  • Van der Meer, H. J., 1995. Visual resolution during growth in a cichlid fish: a morphological and behavioural case study. Brain Behav. Evol. 45: 25-33.
  • Van der Meer, H. J. & G. Ch. Anker, 1984. Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Teleostei, Cichlidae). Neth. J. Zool. 34: 197-209.
  • Van der Meer, H. J., G. Ch. Anker & C. D. N. Barel, 1995. Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Environm. Biol. Fish. 44: 115-132.
  • Van der Meer, H. J. & J. K. Bowmaker, 1995. Interspecific variation of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav. Evol. 45: 232-240.
  • Westheimer G. (1987) Visual Acuity. Chapter 17. In: Moses, R. A. and Hart, W. M. (eds.) Adler’s Physiology of the E ye, Clinical Application. St. Louis: The C. V. Mosby Company.
  • Couldridge, V.C.K., 2002. Experimental manipulation of male eggspots demonstrates female preferences for one large spot in Pseudotropheus lombardoi. J. Fish Biol. 60 : 726-730.
  • Egger, B., Y. Klaefiger, A. Theis & W. Salzburger, 2011. A sensory bias has triggered the evolution of egg-spots in cichlid fishes. PLos ONE 6: e25601. www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0025601.
  • Endler, J.A. & T. McLellan, 1988. The process of evolution: towards a newer synthesis. Ann. Rev. Ecol. Syst. 19: 395-421.
  • Goldschmidt, T., 1991.  Egg Mimics in Haplochromine Cichlids (Pisces, Perciformes) from Lake Victoria. Ethology 88: 177-190.
  • Goldschmidt, T., 1996. Darwin’s Dreampond. Drama in Lake Victoria. MIT Press, Cambridge, Massachusetts, USA.
  • Goldschmidt, T & J. de Visser, 1990. On the possible role of egg mimics in speciation. Acta Biotheor. 38: 125-134.
  • Grether, G.F., G.R. Kolluru, F.H. Rodd, J. de la Cerda & K. Shimazaki, 2005. Carotenoid availability affects the development of a colour-based mate preference and the sensory bias to which it is genetically linked. Proc. R. Soc. B 272: 2181–2188. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559943/
  • Hert, E.,1989. The function of eggspots in an African mouth-breeding cichlid fish. Anim. Behav. 37: 726-732.
  • Hert, E., 1991. Female choice based on egg-spots in Pseudotropheus aurora Burgess, 1976, a rock-dwelling cichlid of Lake Malawi, Africa. J. Fish Biol. 38: 951-953.
  • Heule, C. & W. Salzburger, 2011. The ontogenetic development of egg-spots in the haplochromine cichlid fish Astatotilapia burtoni. J. Fish Biol. 78: 1588-1593. (http://evolution.unibas.ch/salzburger/pub/054_JFB_2011.pdf)
  • Lehtonen, T.K. & A. Meyer, 2011. Heritability and adaptive significance of the number of egg-dummies in the cichlid fish Astatotilapia burtoni. Proc. R. Soc. B 278: 2318-2324. http://rspb.royalsocietypublishing.org/content/early/2011/01/04/rspb.2010.2483.full
  • Salzburger, W., I. Braasch & A. Meyer, 2007. Adaptive sequence evolution in a color gene involved in the formation of the characteristic egg-dummies of male haplochromine cichlid fishes. BMC Biol. 5: 51 http://www.biomedcentral.com/1741-7007/5/51 .
  • Theis, A., W. Salzburger & B. Egger, 2012. The function of anal fin egg-spots in the cichlid fish Astatotilapia burtoni. PLos ONE 7: e29878. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0029878
  • Tobler, M., 2006. The eggspots of cichlids: Evolution through sensory exploitation? Z. Fischkunde 8: 39-46.
  • Van Doorn, G.S., U. Dieckmann & F.J. Weissing, 2004. Sympatric speciation by sexual selection: a critical re-evaluation. Am. Nat. 163: 709-725.
  • Wickler, W., 1966. Mimicry in tropical fishes. Philos.Trans.R.Soc.Lond.Ser.B Biol.Sci.251:473-475.
  • Wickler, W., 1962. Ei-Attrappen und Moulbrüten bei afrikanischen Cichliden. Z.Tierpsychol.19: 129-164.
  • Bradbury, J.W. & S.L. Vehrencamp, 2011. Principles of Animal Communication. Sinauer Associates Inc., Sunderland, USA.
  • Carleton, K., 2009. Cichlid fish visual systems: mechanisms of spectral tuning. Integr. Zool. 4: 75-86. http://onlinelibrary.wiley.com/doi/10.1111/j.1749-4877.2008.00137.x/pdf.
  • Cronin, T.W., N. Shashar, R.L. Caldwell, J. Marshall, A.G. Cheroske & T.-H. Chiou, 2003. Polarization vision and its role in biological signalling. Integr. Comp. Biol. 43: 549-558.
  • Dalton, B.E., T.W. Cronin, N.J. Marshall & K.L. Carleton, 2010. The fish eye view: are cichlids conspicuous? J. Exp. Biol. 213: 2243-2255.
  • Darmaillacq, A.-S. & N. Shashar, 2008.Lack of polarization optomotor response in the cuttlefish Sepia elongata (d'Orbigny, 1845). Physiol. Behav. 94: 616-620.
  • Davitz, M.A. & K.R. McKaye, 1978. Discrimination between horizontally and vertically polarized light by the cichlid fish, Pseudotropheus macrophthalmus. Copeia 2: 333–334.
  • Dobberfuhl, A.P., J.F.P. Ullmann & C.A. Shumway, 2005. Visual acuity, environmental complexity, and social organization in African cichlid fishes. Behav. Neurosci. 119: 1648-1655.
  • Glantz, R.M. & J.P. Schroeter, 2006. Polarization contrast and motion detection. J. Comp. Physiol. A 192: 905-914.
  • Hasegawa, E., 2007.Visual characteristics of three species of salmonids stocked from Japanese hatcheries. North Pacific Anadromous Fish Comm. Tech. Rep. 7: 107–109.
  • Hawryshyn, C.W., 2010. Ultraviolet polarization vision and visually guided behavior in fishes. Brain Behav. Evol. 75: 186-194.
  • Hawryshyn, C.W., 2000. Ultraviolet polarization vision in fishes: possible mechanisms for coding e-vector.  Phyl. Trans. Biol. Sc. 355: 1187-1190.
  • Horváth, G. & D. Varjú, 2003. Polarized Light in Animal Vision: Polarization Patterns in Nature. Springer-Verlag, Berlin, Heidelberg, New York.
  • Johnson, S., N.J. Marshall & E.A. Widder, 2011.Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton. Phil. Trans. R. Soc. B 366: 655–670.
  • Kamermans, M. & C. Hawryshyn, 2011. Teleost polarization vision: how it might work and what it might be good for. Phil. Trans. R. Soc. B 366: 742-756.
  • Kornfield, I. & E.F. Smith, 2000. African cichlid fishes: model systems for evolutionary biology. Ann. Rev. Ecol. Syst. 31: 163-196.
  • Kröger, R.H.H., J.K. Bowmaker & H-J. Wagner, 1999. Morphological changes in the retina of Aequidens pulcher (Cichlidae) after rearing in monochromatic light. Vision Res. 39: 2441-2448.
  • Kröger, R.H.H, B. Knoblauch & H.J. Wagner, 2003. Rearing in different photic and spectral environments changes the optomotor response to chromatic stimuli in the cichlid fish Aequidens pulcher. J. Exp. Biol. 206: 1643-1648.
  • Maan, M.E., K.D. Hofker, J.J.M. van Alphen & O. Seehausen, 2006. Sensory drive in cichlid speciation. Am Nat. 167: 947-954.
  • Marshall, N.J. & T.W. Cronin, 2011. Polarisation vision. Cur. Biol. 21: 101-105.
  • Novales Flamarique, I. & C.W. Hawryshyn, 1998a. Photoreceptor types and their relation to the spectral and polarization sensitivities of clupeid fishes. J. Comp. Physiol. A 189: 793-803.
  • Novales Flamarique, I. & C.W. Hawryshyn, 1998b. The common white sucker (Catostomus commersoni): a fish with ultraviolet sensitivity that lacks polarization sensitivity. J. Comp. Physiol. A 182: 331-342.
  • Novales Flamarique, I. & C.W. Hawryshyn, 1997. No evidence of polarization sensitivity in freshwater sunfish from multi-unit optic nerve recordings. Vision Res. 37: 967-973.
  • Novales Flamarique, I., C.W. Hawryshyn & F.I. Hárosi, 1998. Double cone internal reflection as a basis for polarization detection in fish. J. Opt. Soc. Am. A 15: 349-357.
  • Pignatelli, V., S.E. Temple, T.-H. Chiou, N.W. Roberts, S.P. Colin & N.J. Marshall, 2011. Behavioural relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes. Phil. Trans. R. Soc. B 366: 734-741.
  • Roberts, N.W., H.F. Gleeson, S.E. Temple, T.J. Heimberger & C.W. Hawryshyn, 2004. Differences in the optical properties of vertebrate photoreceptor classes leading to axial polarization sensitivity. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 21: 335-345.
  • Roberts, N.W. & M.G. Needham, 2007. A Mechanism of Polarized Light Sensitivity in Cone Photoreceptors of the Goldfish Carassius auratus. Biophys. J.93: 3241-3248.
  • Rowe, M. P., 2000. Inferring the retinal anatomy and visual capacities of extinct vertebrates. http://palaeo-electronica.org/2000_1/retinal/issue1_00.htm
  • Rowe, M.P., N. Enqheta, S.S. Easter jr. & E.N. Pugh jr., 1994. Graded-index model of a fish double cone exhibits differential polarization sensitivity. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11: 55-70.
  • Smith, A.R., K. Ma, D. Soares & K.L. Carleton, 2011. Relative LWS cone opsin expression determines optomotor thresholds in Malawi cichlid fish. Genes Brain Behav.11: 185 -192.
  • Streelman, J,M., S.L. Gmyrek, M.R. Kidd, C. Kidd, R.L. Robinson, E. Hert, A.J. Ambali & T.D. Kocher, 2004. Hybridization and contemporary evolution in an introduced cichlid fish from Lake Malawi National Park. Mol. Ecol. 13: 2471–2479.
  • Talbot, C.M. & J. Marshall, 2010. Polarization sensitivity in two species of cuttlefish – Sepia plangon (Gray 1849) and Sepia mestus (Gray 1849) – demonstrated with polarized optomotor stimuli. J. Exp. Biol. 213: 3364-3370.
  • Van der Meer, H.J., 1992.  Constructional morphology of photoreceptor patterns in percomorph fish. Acta Biotheor. 40: 51-85.
  • Van der Meer, H.J., 1994. Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei. Brain Behav. Evol. 44: 40-49.
  • Van der Meer, H.J., G.Ch. Anker & C.D.N. Barel, 1995. Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Env. Biol. Fish 44: 115-132.
  • Van der Meer, H.J. & J.K. Bowmaker, 1995. Interspecific variation of photoreceptors in four co-existing haplochromine cichlid fishes. Brain Behav. Evol. 45: 232-240.

  • Arendt, D., 2003. Evolution of eyes and photoreceptor cell types. Int. J. Dev. Biol. 47: 563-571.
  • Chiou, T.-H., S. Kleinlogel, T. Cronin, R Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen & J. Marshal, 2008. Circular Polarization Vision in a Stomatopod Crustacean. Current Biology 18: 429.
  • Darwin, C., 1872. The Origin of Species, 1st Edition. Senate, London, chpt. 6.
  • Dawkins, R., 1987. The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe without Design. London, New York: W. W. Norton.
  • Kleinlogel, S. & A.G. White, 2008. The Secret World of Shrimps: Polarisation Vision at Its Best. PLoS ONE 3(5): e2190. doi:10.1371/journal.pone.0002190.
  • Lamb, T.D., S.P. Collin & E.N. Pugh, 2007. Evolution of the vertebrate eye: opsins, photoreceptors,retina and eye cup. Nature Rev. Neurosc. 8: 960-976.
  • Lythgoe, J.N., 1979. Ecology of Vision. Clarendon Press, Oxford, UK.
  • Michl, J., 2006. Without a god-like designer no designer-like God. On a mistaken understanding of manmade artefacts in William Paley’s argument from design, in the Intelligent Design proponents, and in their opponents among evolutionary biologists. Proc. Design Hist. Soc. Conf. 2006: Design and Evolution.  
  • Paley, W., 1802 [1829]. Natural Theology: Or, Evidences of the Existence and Attributes of the Deity, Collected from the Appearance of Nature. Boston: Lincoln & Edmands, 1829.
  • Ali, M. A., 1975. Retinomotor responses. In : M. A. Ali (ed.). Vision in Fishes, pp 313-355. Plenum Press, New York.
  • Attwell, D., M. Wilson & S.M. Wu, 1984. A quantitative analysis of interactions between photoreceptors in the salamander (Ambystoma) retina. J. Physiol. 352: 703-737.
  • Aristotle’s Metaphysics, 2000. http://plato.stanford.edu/entries/aristotle-metaphysics/
  • Bains, S., 1996. Machine vision: sunfish shows the way through the fog. Sc. 272: 653. 
  • Baniahmad, A., 2002. Thyroid hormone receptors: methods and protocols. Meth. Mol. Biol. 202: 1-12.
  • Barel, C. D. N., 1983. Towards a constructional morphology of cichlid fishes (Teleostei: Perciformes). Neth. J. Zool. 33: 357–424.
  • Barel. C. D. N., 1993. Concepts of an architectonic approach to transformation morphology. Acta Biotheor. 41: 345-381.
  • Beason, R.C., 2005. Mechanisms of magnetic orientation in birds. Integr. Comp. Biol. 45: 565-573.
  • Beason, R.C. & A. Swali, 2001.  Wavelength effects on the magnetic orientation of the Bobolink, a New World migrant. Abstr. Int. Congr. Neuroethol, 6: 258.
  • Bennet, M.V.L., 2006. Electrical synapses between neurons synchronize gamma oscillations generated during higher level processing in the nervous system. Electroneurobiología 14: 227-250.
  • Boehlert,G.W., 1978. Intraspecific evidence for the function of single and double cones in the teleost retina. Sc. 202: 309-311.
  • Bowmaker, J. K., 1991. The evolution of vertebrate visual pigments and photoreceptors. In: J. R. Cronly-Dillan & R. L. Gregory (eds.). The Evolution of the Eye and Visual System, pp. 63-81. Macmillan, London.
  • Bowmaker, J.K., 1995. The visual pigments of fish. Progr. Retinal Eye Res. 15: 1-31.
  • Cameron, D. A., M. Carter Cornwall & E. F. MacNichol Jr., 1997. Visual pigment assignments in regenerated retina. J. Neurosci.17: 917-923.
  • Cameron, D.A. & E.N. Pugh, 1991. Double cones as a basis for a new type of polarization vision in vertebrates. Nature 353: 161-164.
  • Campenhausen, M. van & K. Kirschfeld, 1998. Spectral sensitivity of the accessory optic system of the pigeon. J. Comp. Physiol. A: Neuroethol. Sens. Neurol Behav. Physiol. 183: 1-6.
  • Coemans, M.A.J.M., J.J. Vos & J.F.W. Nuboer, 1990. No evidence for polarization sensitivity in the pigeon. Naturwissenchaften 77: 13-142.
  • Devalois, R.L., 1973. Central mechanism of colour vision. In: R. Jung (ed.). Handbook of Sensory Physiology Vol. VII/3 Visual Information A. Springer Verlag, Berlin.
  • Degner, S.L. & C.W. Hawryshyn, 2001. Orientation of rainbow trout (Oncorhynchus mykiss) to multiple patches of linearly polarized light. Can. J. Zool. 79: 407-415.
  • Delius, J.D., R.J. Perchard & . Emmerton, 1976. Polarized light discrimination by pigeons and an electroretinographic correlate. J. Comp. Physiol. Psychol. 90: 560-571.
  • Dullemeijer, P., 1974. Concepts and Approaches in Animal Morphology. Van Gorcum & Comp. BV, Assen, The Netherlands.
  • Dullemeijer, P. & G. A. Zweers, 1997. Key note lecture: The variety of explanations of living forms and structures. Europ. J. Morph. 35: 354-364.
  • Gouras, P., 1984. Color vision. Prog. Ret. Res. 3: 227-261.
  • Haesendonck, E. & L. Missotten, 1979. Synaptic contacts of the horizontal cells in the retina of the marine teleost Callionymus lyra L. J. Comp. Neurol. 184: 167-192.
  • Haesendonck, E. & L. Missotten, 1984. Synaptic contacts between bipolar and photoreceptor cells in the retina of Callionymus lyra L. J. Comp. Neurol. 223: 387-399.
  • Harosi, F. I., 1994. Analysis of two spectral properties of vertebrate visual pigments. Vision Res. 34: 1359-1369.
  • Hawryshyn, C.W., 2000. Ultraviolet polarization vision in fishes: possible mechanisms for coding e-vector. Phil. Trans. Roy. Soc. London, B. Biol. Sci. 335: 1187-1190.
  • Jacobs, G. H., 1993. The distribution and nature of color vision among the mammals. Biol. Rev. 68: 413-417.
  • Jameson, D., 1972. Theoretical issues of colour vision. In: D. Jameson & L.M. Hurvich (eds.). Handbook of Sensory Physiology, Vol. VII/4 Visual Psychophysics. Springer Verlag, Berlin. pp. 381-412.
  • Johnson, B.K., 1960. Optics and Optical Instruments. Dover Publ. New York.
  • Kamermans, M., D.A. Kraaij & H. Spekreijse, 1998. The cone/horizontal network: a possible site for color constancy. Visual Nerurosc. 15: 787-797.
  • Kolb, H., E. Fernandez & R. Nelson, 2001. WEBVISION. The organisation of the retina and visual system. http://webvision.med.utah.edu/photo1.html
  • Kragh Jensen, K, 2010. Light-dependent orientation responses in animals can be explained by a model of compass cue integration. J. Theor. Biol. 262: 129-141.
  • Kröger, R.H.H., J.K. Bowmaker & H-J. Wagner, 1999. Morphological changes in the retina of Aequidens pulcher (Cichlidae) after rearing in monochromatic light. Vision Res. 39: 2441-2448.
  • Kunz, Y.W., 2006. Review of development and aging in the eye of teleost fish. Neuroembryol. Aging 4: 31-60.
  • Lamb, T.D.,  S.P. Collin & E.N. Pugh, 2007. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye-cup. Nat.Rev. Neurosc. 8: 960-976.
  • Lasater, E., R.A. Normann & H.E. Kolb, 1989. Signal integration at the pedicle of turtle cone photoreceptors: an anatomical and electrophysiological study.  Visual Neurosci. 2: 553-564.
  • Lyall, A.H., 1957. Cone arrangements in teleost retinae. Quart. J. Micr. Sci. 98 : 189-201.
  • Lythgoe, 1979. Ecology of Vision. Clarendon Press, Oxford, UK.
  • Marchiafava, P.L., 1985. Cell coupling in double cones of the fish retina. Proc. R. Soc. Lond. B 226: 211-215.
  • Miller, J.L. & J.I. Korenbrot, 1993. Phototransduction and adaptation in rods, single cones and twin cones of the striped bass retina: a comparative study. Vis. Neurosc. 10: 653-667.
  • Morrow, E.M., T. Furukawa & C.L. Cepko, 1998. Vertebrate photoreceptor cell development and disease. Trends Cell Biol. 8: 353-358.
  • Neumeyer, C., 1992. Tetrachromatic color vision in goldfish: evidence from color mixture experiments. J. Comp. Physiol. A 171: 639-649.
  • Novales Flamarique, I. & C.W. Hawryshyn, 1998. Photoreceptor types and their relation to spectral and polarization sensitivities of clupeid fishes. J. Comp. Physiol. A Sens. Neur. Behav. Phys. 182: 793-803.
  • Novales Flamarique, I., C.W. Hawryshyn & F.I. Harosi, 1998. Double-cone internal reflection as a basis for polarization detection in fish. J. Opt. Soc. Am. A 15: 349-358.
  • Nuboer, J.F.W., 1986. A comparative view on colour vision. Neth. J. Zool. 36: 344-380.
  • Parkyn, D.C. & C.W. Hawryshyn, 2000. Spectral and ultraviolet-polarisation sensitivity in juvenile salmonids: a comparative analysis using electrophysiology. J. Exp. Biol. 203: 1173-1191.
  • Pierce, M. E. & J. C. Besharse, 1985. Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length. J. Gen. Phys. 86: 671-689.
  • Raymond, P.A. & L.K. Barthel, 2004. A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. Int. J. Dev. Biol. 48 : 935-945.
  • Richter, A. & E.J. Simon, 1974. Electrical responses of double cones in the turtle retina. J. Physiol. 242: 673-683.
  • Rowe, M. P., 2000. Inferring the retinal anatomy and visual capacities of extinct vertebrates. http://palaeo-electronica.org/2000_1/retinal/issue1_00.htm
  • Rowe, M.P., N. Engheta, S.S. Easter & .N. Pugh, 1994. Graded-index model of a fish double cone exhibits differential polarization sensitivity. J. Opt. Soc. Am. A 11: 55-70.
  • Rowe, M.P., N. Pugh, J.S. Tyo & N. Engheta, 1995. Polarization-difference imaging: a biologically inspired technique for observation through scattering media. Opt. Lett. 20: 608-610.
  • Schultze, M., 1866. Anatomie und Physiologie der Netzhaut. Arch. Mikr. Anat. Entw. Mech. 2: 175-286.
  • Siebeck, U.E., G.M. Wallis & L. Litherland, 2008. Colour vision in coral reef fish. J. Ex. Biol. 211: 354-360.
  • Schwab, I.R., 2002. These eyes are hot … Brit. J. Ophtalmol. 86: 266.
  • Stell, W.K., L. Barton, T. Ohtsuka & J. Hirano, 1994. Chromatic and neurochemical  correlates of synapses between cones and horizontal cells. In: R.J. Olson & E.M. Lasater (eds.).  Great Basin Visual Science Symposium. Univ. Utah, Salt Lake City, USA. pp. 41-48.
  • Stenkamp, D.L. & D.A. Cameron, 2002. Cellular pattern formation in the retina: retinal regeneration as a model system. Mol. Vision 8: 280-293.
  • Stenkamp, D.L., O. Hisatomi, L.K. Barthel, F. Tokunaga & P.A. Raymond, 1996. Temporal expression of rod and cone opsins in embryonic goldfish retina predicts the spatial organization of the cone mosaic. Invest. Opht. Visual Sc. 37: 363-376. 
  • Strauss, O., 2004. The retinal pigment epithelium in visual function. Physiol. Rev. 88: 845-881.
  • Tohya, S., AQ. Mochizuki  Y. Iwasa, 2003. Difference in the retinal cone mosaic pattern between zebrafish and medaka: cell-rearrangement model. J. Theor. Biol. 221: 289-300.
  • Van der Meer, H.J., 1992. Constructional morphology of photoreceptor patterns in percomorph fish. Acta Biotheor. 40: 51-85.
  • Van der Meer, H.J. & G.Ch. Anker, 1984. Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Teleostei, Cichlidae). Neth. J. Zool. 34: 197-209.
  • Verweij, J., M. Kamermans, E.C. van den Aker & H. Spekreijse,1996. Modulation of horizontal cell receptive fields in the light adapted goldfish retina. Vision Res. 36: 3913-3923.
  • Vinci, T. & J.S. Robert, 2005. Aristotle and Modern Genetics. J. Hist. Ideas 66: 201-221.
  • Von Frisch, K., 1925. Farbensinn der Fische und Duplizitatstheorie. Z. Vergl. Physiol. 2: 393-452.
  • Wagner, H.-J., 1978. Cell types and connectivity patterns in mosaic retinas. Adv. Anat. Embryol. Cell Biol. 55: 1-81.
  • Wagner, H.-J., 1990. Retinal structure of fishes. In: R. H. Douglas & M. B. A. Djamgoz (eds.). The Visual System of Fish. pp. 109-157.Chapman and Hall, London.
  • Walls, G. L., 1942. The Vertebrate Eye and its Adaptive Radiation.The Cranbook Press, Bloomfield Hills, Michigan.
  • Wiltschko, R., & W. Wiltschko. 1995. Magnetic Orientation of Animals. Springer-Verlag, Berlin
  • Wiltschko, R. & W. Wiltschko, 2003. Avian navigation: from historical to modern times. An. Behav. 65: 257-272.
  • Yan, R.-T. & S.-Z Wang, 2004. Requirement of NeuroD for Photoreceptor Formation in the Chick Retina. Invst. Ophthalmol. Visual Sc. 45: 48-58.
  • Zhang, J. & S.M. Wu, 2004. Connexin 35/36 gap junction proteins are expressed in photoreceptors of the tiger salamander retina. J. Comp. Neurol. 470: 1-12.
  • Audesirk, T., G. Audesirk & B.E. Byers, 2005. Biology: life on Earth. Pearson Prentice Hall, Pearson Education, Inc. New Jersey, USA.
  • Bridges, C.D.B., 1990. The molecular basis of the visual cycle. In: M.I. Dawson & W.H. Okamura (eds.). Chemistry and Biology of Synthetic Retinoids. CRC Press, USA. pp. 28-44.
  • Ebrey, T.G., 2002. A new type of photoreceptor in algae. Proc. Natl. Acad. Sci. USA 99: 8463-8464.
  • Hisatomi, O., S. Yamamoto, Y. Kobayashi, H. Honkawa, Y. Takahashi & F. Tokunaga, 2002. Evolution of visual pigments and related molecules. J. Photoscience  9: 41-43.
  • Lehninger, A.L., 1971. Bioenergetics. W.A. Benjamin, Inc. Philippines.
  • Lockhart, P.J., A.W. Larkum, M. Steel, P.J. Waddell & D. Penny, 1996. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc. Natl. Acad. Sci. USA 93: 1930-1934.
  • Mironova, E.V., A.Yu. Lukin, S.V. Shevyakov, S.G. Alexeeva, V.I. Shvets, O.V. Demina, A.A. Khodonov & L.V. Khitrina, 2001. Synthesis and properties of bacteriorhodopsin analogs containing electron-density labels in the chromophore moiety. Biokhimya 66 (11): 1323/1638.
  • Stryer, L., 1999. Biochemistry. Freeman & Co. USA.
  • Bolk, L., 1926. Der Problem der Menschwerdung. Fischer, Jena.
  • Darwin, C., 1859. On the Origin of Species by means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.
  • Dixon, D., 1981. After Man – A Zoology of the Future. Harrow House Editions Limited., London.
  • Larsen, C.S., R.M. Matter & D.L. Gebo, 1991. Human Origins: The Fossil Record. Waveland Press Inc., Prospect Heights. USA.
  • Margulis, L., 1992. Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons. W.H. Freeman.
  • Maslow, A.H., 1943. A theory of human motivation. Psychol. Rev. 50: 370-396.
  • Miller, S.L., 1953. Production of amino acids under possible primitive earth conditions. Science 117: 528.
  • Miller, S.L. & H.C. Urey, 1959. Organic compound synthesis on the primitive earth. Science 130: 245.
  • Van der Meer, Henny, 2009. De wonderbaarlijke overheersing van een misbaksel. NVOX 9: 414-415.
  • Albertson, R.C. & T.D. Kocher, 2006. Genetic and developmental basis of cichlid trophic diversity. Heredity 97: 211–221.
  • Anderson, L.C., F.P. Wesselingh & J.H. Hartman, 2010. A phylogenetic and morphologic context for the radiation of an endemic fauna in a long-lived lake: Corbulidae (Bivalvia; Myoida) in the Miocene Pebas Formation of western Amazonia. Paleobiology 36: 534-554.
  • Bordenstein, S.R., C. Brothers, G. Wolfe, M. Bahr, R.L. Minckley, M.E. Clark, J.J. Wernegreen, S.R. Bordenstein, W.S. Reznikoff  & J.H. Werren, 2010. Using the Wolbachia bacterial symbiont to teach inquiry-based science: a high school laboratory series. Am Biol. Teacher 72: 478-483.  
  • Carleton, K.L., J.W. Parry, J.K. Bowmaker, D.M. Hunt & O Seehausen, 2005. Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Mol. Ecol.14: 4341-4353.
  • Catchpole, C.K.,  1987. Bird song, sexual selection and female choice. Tr. Ecol. Evol. 2: 94-97.
  • Charlat, S., E.A. Hornett, J.H. Fullart, N. Davies, G.K. Roderick, N. Wedell & G.D.D. Hurst, 2007. Extraordinary flux in sex ratio. Science 317: 214.
  • Chinsembu, K.C., 2009. Mechanisms and molecular genetic bases of rapid speciation in African cichlids. Biotech. Mol. Biol. Rev. 3: 81-91.
  • Darwin, C., 1859. On the Origin of Species by Means of Natural Selection. J. Murray, London.
  • Davis, C.C., M. Latvis, D.L. Nickrent, K.J. Wurdack & D.A. Baum, 2007. Floral gigantism in Rafflesiaceae. Science 315: 1812.
  • Dobzhansky, T., 1937. Genetics and the Origin of Species. Columbia Univ. Press, USA.
  • Elmer, K.R., C. Reggio, T. Wirth, E. Verheyen, W. Salzburger & A. Meyer, 2009. Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes. Proc. Natl. Acad. Sci. USA 106: 13404-13409.
  • Engelstädter, J. & G.D.D. Hurst, 2009. The ecology and evolution of microbes that manipulate host reproduction. An. Rev. Ecol. Evol. Syst. 40: 127-149.
  • Flemming, A.J., Z.-Z. Chen, A. Cunha, S.W. Emmons & A.M. Leroi, 2000. Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proc. Natl. Acad. Sci. USA 97: 5285-5290.
  • Freeman, A.S. & J.E. Byers, 2006. Divergent induced responses to an invasive predator in marine mussel populations. Science 313: 831-833.
  • Gould, G.C. & MacFadden, B.J. 2004. Gigantism, dwarfism, and Cope's rule: nothing in evolution makes sense without a phylogeny. Am. Mus. Novit. 285: 219–237.
  • Herrel, A., K. Huyghe, B. Vanhooydonck, T. Backeljau, K. Breugelmans, I. Grbac, R. Van Damme & D.J. Irschick, 2007. Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proc. Natl. Acad. Sci. USA 105: 4792–4795.
  • Johnson, N., 2008. Sewall Wright and the development of shifting balance theory. Nature Educ.1: 1.
  • Johnston, I.A., M. Abercromby & Ø. Anderson, 2005. Loss of muscle fibres in a landlocked dwarf Atlantic salmon population. Biol. Lett.1: 419-422.
  • Kettlewell, H.B.D., 1955. Selection experiments on industrial melanism in the Lepidoptera. Heredity 9: 323-­342.
  • Losos, J.B. & R.E. Ricklefs, 2009. Adaptation and diversification on islands. Nature 457: 830-836.
  • Maan, M.E., O. Seehausen, L. Soderberg, L. Johnson, E.A.P. Ripmeester, H.D.J. Mrosso, M.I. Taylor, T.J.M. van Dooren & J.J.M. van Alphen, 2004. Intraspecific sexual selection on a speciation trait, male coloration, in the Lake Victoria cichlid Pundamilia nyererei. Proc. R. Soc. Lond. 271: 2445-2452
  • Madsen, O., M. Scally, C.J. Douady, D.J. Kao, R.W. DeBry, R. Adkins, H.M. Amrine, M.J. Stanhope, W.W. de Jong & M.S. Springer, 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610-614.
  • Majerus, M.E.N., 2009. Industrial melanism in the peppered Moth, Biston betularia: an excellent teaching example of Darwinian evolution in action. Evol. Educ. Outreach 2: 63-74.
  • Maron, J.L., M. Vilà, R. Bommarco, S. Elmendorf & P. Beardsley, 2004. Rapid evolution of an invasive plant. Ecol. Monogr.74: 261-280.
  • Mayr, E., 1942. Systematics and the Origin of Species. Columbia Univ. Press, USA.
  • Price, P.W., 2005. Adaptive radiation of gall-inducing insects. Basic Appl. Ecol. 6: 413-421.
  • Rabosky, D.L. & R.E. Glor, 2010. Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proc. Natl. Acad. Sci. USA107: 22178-22188.
  • Reznick, D.N. & C.K. Ghalombor, 2005. Selection in nature: experimental manipulations of natural populations. Integr. Comp. Biol. 45: 456-462.
  • Reznick, D.N. & R.E. Ricklefs, 2009. Darwin’s bridge between microevolution and macroevolution. Nature 457:837-842.
  • Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934-1937.
  • Salzburger, W., 2009. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Mol.Ecol. 18: 169-185.
  • Schilthuizen, M., P.G. Craze, A.S. Cabanban, A. Davison, E. Gittenberger, J. Stone & B.J. Scott, 2007. Sexual selection maintains whole-body chiral dimorphism..  J. Evol. Biol. 20: 1941-1949.
  • Schulte-Hostedde, A.I., J.S. Millar & H. L.Gibbs, 2003. Sexual selection and mating patterns in a mammal with female-biased sexual size dimorphism. Behav. Ecol. 15: 351-356.
  • Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proc Biol Sci. 273: 1987–1998.
  • Seehausen, O., & J.J.M. van Alphen, 2004. Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria? Ecol. Lett. 2: 262-271.
  • Seehausen, O., J.J.M. van Alphen & F. Witte, 1997. Cichlid Fish Diversity Threatened by Eutrophication That Curbs Sexual Selection. Science 19: 1808-1811.
  • Seehausen, O., Y. Terai, I.S. Magalhaes, K.L. Carleton, H.J.D. Mrosso, R. Miyagi, I. van der Sluijs, M.V. Sneider, M.E. Maan, H. Tachida, H. Imai & N. Okada, 2008. Speciation through sensory drive in cichlid fish. Nature 455: 620-626.
  • Siefferman, L. & G.E. Hill, 2005. Evidence for sexual selection on structural plumage coloration in female eastern bluebirds (Sialia sialis). Evolution 59: 1819-1828.
  • Sirot,L.K.,2003.The evolution of insect mating structures through sexual selection. Fla. Entomol. 86: 124–133.
  • Sonin, O., E. Spanier, D. Levi, B. Patti, P. Rizzo & M.G. Andreoli, 2007. Nanism (dwarfism) in fish: a comparison between red mullet Mullus barbatus from the southeastern and the central Mediterranean. Mar. Ecol. Prog. Ser. 343: 221-228.
  • Van der Meer, Henny, 2011. Snelle evolutie. NVOX 36(3): 130-132.
  • Wallace, A.R., 1858. On the tendency of varieties to depart indefinitely from the original type. J. Proc. Linn. Soc. 3: 53-62.
  • Wells, J., 1999. Second thoughts about peppered moths this classical story of evolution by natural selection needs revising. The Scientist 13: 13.
  • Witte, F., M. Welten, M. Heemskerk, I. van der Stap, L. Ham, C. Rutjes & J. Wanink, 2008. Major morphological changes in a Lake Victoria cichlid fish within two decades. Biol. J. Linn. Soc. 94: 41-52.
  • Wright, S., 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Genet 1: 356–366.
  • Wright, S., 1982. Character, change speciation and higher taxa. Evolution 36: 427-443.
  • Anilla, A. & E. Anilla, 2008. Why did life emerge? Int. J. Astrobiol. 7: 293-300.
  • Ameisen, J.C., 2002. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death and Differentiation 9: 367-393.
  • Aspect, A., 2007. Quantum mechanics: To be or not to be local. Nature 446: 866-867.
  • Atkins, P.W., 1991. Atoms, Electrons and Change. The Scientific American Library, N.Y., USA.
  • Axelrod, R. & W.D. Hamilton, 1981.The evolution of cooperation. Science 211: 1390-1396.
  • Bascompte, J. & P. Jordano, 2007. Plant-animal mutualistic networks: the architecture of biodiversity.  Annu. Rev. Ecol. Evol. Syst. 38: 567–593.
  • Bates, S.T., G.W.G. Cropsey, J.G. Caporaso, R. Knight & N. Fierer, 2011. Bacterial communities associated with the lichen symbiosis. Appl. Env. Microbiol. 77: 1309-1314.
  • Behe, M., 1996. Darwin’s Black Box. Free Press, New York, USA.
  • Bell, P.J.L., 2009. The viral eukaryogenesis hypothesis. Ann. N.Y. Acad. Sci. 1178: 91-105.
  • Berkovich, S., 2010.Obtaining inexhaustible clean energy by parametric resonance under nonlocality clocking. http://www.bestthinking.com.
  • Bijma, P. & M.J. Wade, 2008. The joint effects of kin, multilevel selection and indirect genetic effects on response to genetic selection. J. Evol. Biol. 21: 1175-1188 (http://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2008.01550.x/full).
  • Bonner, J.T., 2000. First Signals. The Evolution of Multicellular Development. Princeton Univ. Press, N.J. USA.
  • Bonner, J.T. 1998. The origin of multicellularity. Integr. Biol. 1: 27-36.
  • Calcott, B., 2011. Alternative patterns of explanation for major transitions. In: Calcott, B. & K. Sterelny (eds.). Major Transitions in Evolution Revisited. The MIT Press, Massachusetts, USA.
  • Cavalier-Smith, T., 1986. Cilia versus undulipodia. Biosci. 36: 293-293.
  • Cavelier-Smith, T. 2010. Deep phylogeny, ancestral groups and the four ages of life. Phil. Trans. R. Soc. B 365: 111—132. http://rstb.royalsocietypublishing.org/content/365/1537/111.full.pdf+html
  • Close, F., 2003. Particle physics: Strange days. Nature 424:376-377. 
  • Cordes, E.E. M.A.  Arthur, K. Shea, R.S.  Arvidson,  & C.R.  Fisher, 2005. Modeling the mutualistic interactions between tubeworms and microbial consortia. PloS Biol. 3: 1-10 (www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1044833 ).
  • Corning, P.A., 1998. “The synergism hypothesis”: on the concept of synergy and its role in the evolution of complex systems.  J. Soc. Evol. Sys. 21: 133-172.
  • Corning, P.A., 2003. Nature’s Magic: Synergy in Evolution and the Fate of Humankind. Cambridge University Press, USA.
  • Crick, F., 1981. Life Itself: Its Origin and Nature. Simon & Schuster, New York, USA.
  • Criswell, D.C., 2009. A review of mitoribosome structure and function does not support the serial endosymbiotic theory.Ans. Res. J. 2: 107–115 (http://www.answersingenesis.org/contents/379/arj/v2/Serial_Endosymbiotic_Theory.pdf ).
  • Darwin, C.R., 1859. The Origin of Species. John Murray, London, UK.
  • Dawkins, R., 1976. The Selfish Gene. Oxford Univ. Press, UK.
  • Dennet, D.C., 1991.Conciousness Explained. Allen Lane, Penguin Press, London, UK.
  • Di Corpo, U. & A. Vannini, 2010. Advanced Waves and Quantum Mechanics. Syntropy 1: 74-81.
  • Dobzhanski, T., 1937. Genetics and the Origin of Species. Columbia Univ. Press, NY, USA.
  • Duffy, J.E., 2002. The ecology and evolution of eusociality in sponge-dwelling shrimp. In: Kikuchi, T. (ed.). Genes, Behavior, and Evolution in Social Insects. Univ. Hokkaido Press, Sapporo, Japan.
  • Egel, R. & D. Penny, 2008. On the origin of meiosis in eukaryotic evolution: coevolution of meiosis and mitosis from feeble beginnings. Gen. Dyn. Stab. 3: 249-288.
  • Érdi, P., 2008. Complexity Explained. Springer-Verlag, Heidelberg, Berlin.
  • Feynman, R.P., 1987. The reason for antiparticles. In: Feynman R.P. & S. Weinberg. The 1986 Dirac memorial lectures. Cambridge Univ. Press. UK.
  • Fiscaletti, D. & A. Sorli, 2007.Basic frequency of a-temporal physical space as a driving force of evolution. Sci. Inq. 8: 29-34 (http://fqxi.org/data/forum-attachments/2_IIGSS_BASIC_FREQUENCY.pdf ).
  • Fletcher, J.A. & M. Doebeli, 2008. A simple and general explanation for the evolution of altruism. Proc. R. Soc. B 7, 276/1654: 13-19 (http://rspb.royalsocietypublishing.org/content/276/1654/13.full). 
  • Foster, K.R. & F.L.W. Ratnieks, 2005. A new eusocial vertebrate? TRENDS Ecol. Evol. 20: 363-364. (www.zoo.ox.ac.uk/group/foster/FosterRatnieksTREE2005.pdf).
  • Foster, K.R., T. Wenseleers & F.L.W. Ratnieks, 2006. Kin selection is the key to altruism. Trends Ecol. Evol. 21: 57-60. (www.zoo.ox.ac.uk/group/foster/FosteretalTREE2006.pdf).
  • Frautschi, S., 1982. Entropy in an expanding universe. Science 217: 593-599.
  • Furusawa, C. & K. Kaneko, 2002. Origin of multicellular organisms as an inevitable consequence of dynamical systems. Anat. Rec. 268: 327-342.
  • Gardner, A. & A. Grafen, 2009. Capturing the superorganism: a formal theory of group adaptation. J. Evol. Biol. 22: 659-671 (http://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2008.01681.x/full)
  • Gibson, C.H., 2005. The first turbulent combustion. Combust. Sci. Tech., 177: 1-25.
  • Gómez, J.M., F. Perfectti & P. Jordano, 2011. The functional consequences of mutualistic network architecture. PLoS ONE 6: 16143. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0016143 
  • Goodwin, B. & G. Webster, 1996. Form and Transformation. Generative and Relational Principles in Biology. Cambridge Univ. Press, UK.
  • Gould, S.J., 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17: 411-423.
  • Greene, B.R., 2004. The Fabric of the Cosmos. A.A. Knopf, N.Y. USA.
  • Grüter, C., M.S. Balbuena & W.M. Farina, 2007. Informational conflicts created by the waggle dance. Proc Biol Sci. 7: 1321–1327.
  • Gumbiner, B.M., 2005. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6: 622-634.
  • Gupta, R.S. & G.B. Golding, 1996. The origin of the eukaryotic cell. Trends Biomed. Sci. 21: 166-171.
  • Gurzadian, V.G. & R. Penrose, 2010. Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity. arXiv:1011.3706v1 [astro-ph.CO].
  • Guth, A.H., 1997. The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Perseus Books, www.perseuspublishing.com.
  • Haken, H., 2004. Synergetics. Introduction and Advanced Topics. Springer-Verlag, Heidelberg, Berlin.
  • Hartman, H., P. Favaretto & T.F. Smith, 2006. The archaeal origins of the eukaryotic translational system. Archeae 2: 1-9.
  • Hawking, S., 1982. The unpredictability of quantum gravity. Comm. Math. Phys. 87: 395-415.
  • Hawking, S., 1988. A Brief History of Time. From the Big Bang to Black Holes. Bantam Bell Publ. Group, USA.
  • Heckman, D.S., D.M. Geiser, B.R. Eidell, R.L. Stauffer, N.L. Kardos & S.B. Hedges, 2001. Molecular evidence for the early colonization of land by fungi and plants. Science 293: 1129-1133.
  • Heylighen, F., 1992. Evolution, selfishness and cooperation. J. Ideas 2: 70-76.
  • Heylighen, F., 2000. Evolutionary transitions: how do levels of complexity emerge? Complexity 6:. 53-57.
  • Hofstadter, D.R., 1979. Gödel, Escher, Bach. An Eternal Golden Braid. Vintage Books, New York, USA. pp. 315-320.
  • Hölldopler, B. & E.O. Wilson, 2009. The Superorganism: The Beauty, Elegance and Strangeness of Insect Societies. Norton & Comp. Inc., N.Y., USA.
  • Hordijk, W., J. Hein & M. Steel, 2010. Autocatalytic sets and the origin of life. Entropy 12: 1733-1742. http://www.mdpi.com/1099-4300/12/7/1733/pdf.
  • Horiike, T., K. Hamada, S. Kanaya & T. Shinozawa, 2001. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat. Cell Biol. 3: 210-214.
  • Hoyle, F. & N.C. Wickramasinghe, 2000. Origins of Life. Steps towards Panspermia. Kluwerr Acad. Publ., Dordrecht, The Netherlands.
  • Humphrey, N.2011. Soul Dust. The Magic of Consciousness. Princeton Univ. Press, Oxford, UK.
  • Jékely, G., 2008. Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. BiolDir. 3: 31. http://www.biology-direct.com/content/3/1/31.
  • Jékely, G., 2007. Origin of eukaryotic endomembranes: A critical evaluation of different model scenarios. Adv. Exp. Med. Biol. 607: 38-51.
  • Johnson, W.E., 2010. Endless forms most viral. PloS genet. 6 (www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1001210).
  • Johnson, A.P., H.J. Cleaves, J.P. Dworkin , D.P. Glavin, A. Lazcano & J.L. Bada, 2008. The Miller volcanic spark discharge experiment. Sci. 322: 404.
  • Johnston, W.K., P.J. Unrau, M.S. Lawrence, M.E. Glasner & D.P. Bartel, 2001. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Sci. 292: 1319–1325.
  • Joyce, G.F., 2002. The antiquity of RNA-based evolution. Nature 418: 214–221.
  • Kauffman, S.A., 1993. The Origins of Order: Self-organization and Selection in Evolution, Oxford University Press, New York, USA.
  • Kauffman, S.A., 1991. Antichaos and adaptation. Sci. Am.265: 78-84.
  • Keeling, P.J., 2004. Diversity and evolutionary history of plastids and their hosts. Am. J. Botany 91: 1481-1493.
  • Kenrick, P & P.R. Crane, 1997. The origin and early evolution of plants on land. Nature 389: 33-39.
  • Kerney, R., E. Kim, R.P. Hangarter, A.A. Heiss, C.D. Bishop & B.K. Hall, 2011. Intracellular invasion of green algae in a salamander host. PNAS 108: 6497-502. http://www.ncbi.nlm.nih.gov/pubmed?term=kerney%20salamander
  • Kiers, E.T., M. Duhamel, Y. Beesetty, J.A. Mensah, O. Franken, E. Verbruggen, C.R. Fellbaum, G.A. Kowalchuk, M.M. Hart, A. Bago, T.M. Palmer, S.A. West, P. Vandenkoornhuyse, J. Jansa, H. Bücking, 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333: 880-882.
  • Koga, Y. & H. Morii, 2007. Biosynthesis of ether-type polar lipids in Archaea and evolutionary considerations. Microbiol. Mol. Biol. Rev. 71: 97-120.
  • Koonin, E.V., 2007. The Biological Big Bang model for the major transitions in evolution. http://www.biology-direct.com/content/2/1/21
  • Koonin, E.V. & M.Y. Galperin, 2003. Sequence - Evolution - Function: Computational Approaches in Comparative Genomics. Kluwer Academic, Boston, USA.
  • Krauss, L.M. & G.D. Landman, 2000. Life, the universe, and nothing: life and death in an ever-expanding universe. Ap. J. 531: 22.
  • Lehmann, K. & U. Schmidt, 2003. Group II introns: structure and catalytic versatility of large natural ribozymes. Crit. Rev. Biochem. Mol. Biol. 38: 249-303.
  • Lineweaver, C.H. & C.A. Egan, 2008. Life, gravity and the second law of thermodynamics. J. plrev. 5: 225-242.
  • Lively, C.M. 2010. A review of red queen models for the persistence of obligate sexual reproduction. J. Hered. 101: 13-20.
  • Lopez-Garcia, P. & D. Moreira, 2006. Selective forces for the origin of the eukaryotic nucleus. BioEssays 28: 525-533.
  • Lovelock, J., 2009. The Vanishing Face of Gaia: A Final Warning: Enjoy It While You Can. Allen Lane, London, UK.
  • Lovelock, J., 1965. A physical basis for life detection experiments. Nature 207: 568–570.
  • Lynch, M. & J.S. Conery, 2003.The origins of genome complexity. Sci. 302: 1401-1404.
  • Mahulikar, S.P. & H. Herwig, 2009. Exact thermodynamic principles for dynamic order existence and evolution in chaos. Chaos, Solitons & Fractals 41: 1939-1948.
  • Mainard Smith, J. & E. Szathmáry, 1995. The Major Transition in Evolution. W.H. Freeman, New York, USA.
  • Margulis, L., 1981. Symbiosis in Cell Evolution. San Francisco: W. H. Freeman and Company. pp. 206–227.
  • Margulis, L.,1998. Symbiotic Planet. Basic Books, New York, USA.
  • Margulis, L., M.F. Dolan & R. Guerrero, 2000. The chimeric eukaryote: Origin of the nucleus from the karyomastigont in amitochondriate protists. Proc. Nat. Acad. Sci. 97: 6954-6959.
  • Maturama, H., 1987.Everything is said by an observer. In: W. Thompson, (ed.). Gaia, a Way of Knowing. Lindisfarne Press, Great Barrington, MA, pp. 65-82.
  • McDonald, J.H., 2002. A reducibly complex mousetrap. http://udel.edu/~mcdonald/mousetrap.html
  • Meech, R.W., 2007. Non-neural reflexes: sponges and the origins of behaviour. Cur. Biol. 18: 70-72.
  • Mereschkowski, C., 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Centralbl. 25: 593–604.
  • Michod, R.E., 1997. Cooperation and conflict in the evolution of individuality. I. Multilevel selection of the organism. Am. Nat. 149: 607-645. 
  • Miller, S.L. & H.C. Urey, 1959. Organic compound synthesis on the primitive earth. Sci. 130: 245.
  • Miller, S.L. & J.L. Bada, 1993. Submarine hot springs and the origin of life. Nature 334: 609-611.
  • Mitchell, D.R., 2007. The evolution of eukaryotic cilia and flagella as motile and sensory organelles. Adv. Exp. Med. Biol. 607: 130-140.
  • Monaco, R.R. & F. Rateb de Montozon, 2005. Self-organization, autocatalysis and models of the origin of life.  http://tuvalu.santafe.edu/education/csss/csss05/papers/monaco_et_al._cssssf05.pdf.
  • Monnard, P.-A. & D.W. Deamer, 2002. Membrane self-assembly processes: Steps toward the first cellular life. Anat. Rec. 268: 196-207.
  • Moran, N.A., 2006. Symbiosis. Cur. Biol. 16: 866-871.
  • Morowitz, J., 1985. Mayonnaise and the Origin of Life: Thoughts of Minds and Molecules. Ox Bow Press. Woolbridge, USA.
  • Müller, W.E.G., 2003. The origin of metazoan complexity: porifera as integrated animals. Integr. Comp. Biol. 43: 3-10.
  • Nalepa, C.A., 2011. Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality. In: Bignell, D.E., Y. Roisin & N. Lo (eds.). Biology of Termites: a Modern Synthesis. Springer Science+Bussiness Media, USA. pp. 69-95.
  • Nelson, K.E., L.M. Levy., & S.L. Miller, 2000. Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc. Nation. Acad. Sci. U.S.A. 97: 3868–3871.
  • Nowak, M.A., 2006. Five rules for the evolution of cooperation. Science 314: 1560-1563.
  • O’Gorman, R., K.M. Sheldon & D.S. Wilson, 2008. For the good of the group? Exploring group-level evolutionary adaptations using multilevel selection theory. Group Dynamics: Theory, Research, and Practice 12: 17-26.
  • Ohkuma, M., S. Noda, Y. Hongoh, C.A. Nalepa & T. Inoue, 2009. Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc. R. Soc. B 276: 239-245.
  • Parker, E.T., H.J. Cleaves, J.P. Dworkin, D.P. Glavin, M. Callahan, A. Lazcano & J.L. Bada, 2011. Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc. Natl. Acad. Sci. USA. www.ncbi.nlm.nih.gov/pubmed/21422282.
  • Pasek, M.A. & D.S. Lauretta, 2008. Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Orig. Life Evol. Biosph.38: 5-21.
  • Pennisi, E., 2009. On the origin of cooperation. Science 325: 1176-1199.
  • Penny, D., M.P. Hoeppner, A.M. Poole & D.C. Jeffares, 2009. An overview of the introns-first theory. J. Mol. Evol. 65: 527-540.
  • Peretó, J., 2005. Controversies on the origin of life. Int. Microbiol. 8: 23–31.
  • Pisani, D., L.L. Poling, M. Lyons-Weiler & S.B. Hedges, 2004. The colonization of land animals: molecular phylogeny and divergence times among arthropods. BMC Biol. 2: 1.
  • Rattenborg, N.C., 2006. Do birds sleep in flight? Naturwissenschaften 93: 413-425.
  • Ratra, B. & M.S. Vogeley, 2008. The beginning and evolution of the universe. Publ. Astron. Soc. Pac. 120: 235-265.
  • Reid, R.G.B., 2007. Biological Emergences. Evolution by Natural Experiment. The MIT Press, USA.
  • Reeve, H.K. & B. Hölldobler, 2007.The emergence of a superorganism through intergroup competition. PNAS 104: 23 9736-9740. www.pnas.org/content/104/23/9736.abstract.
  • Rodriguez-Trelles, F., R. Tarrio & F.J. Ayala, 2006. Origins and evolution of spliceosomal introns. Ann. Rev. Genet. 40: 47-76.
  • Rumpho, M.E., J.M. Warful, J. Lee, K. Kannan, M.S. Tyler, D. Bhattacharya, A. Moustafa & J.M. Manhart, 2008. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. PNAS 105: 17867-17871. http://www.pnas.org/content/105/46/17867.abstract.
  • Safronov, V.S., 1969.Evolution of the protoplanetary cloud and formation of the earth and planets. Nauka, Moscow. Translated for NASA and NSF by Israel Program for Scientific Translations, 1972.
  • Sagan, C. & J. Agel, 1973. Cosmic Connection: An Extraterrestrial Perspective. Anchor Press, Double Day, N.Y., USA.
  • Sagan, L., 1967. On the origin of mitosing cells. J. Theor. Bio. 14: 255–274.
  • Salthe, S.N. & G. Fuhrman, 2005. The cosmic bellows: the Big Bang and the Second Law. J. Nat. Soc. Phil. 1: 295-318.
  • Schewe, P. & B. Stein, 2005. An ocean of quarks. Physics News Update 728 (http://www.aip.org/pnu/2005/split/728-1.html).
  • Segré, D., D. Ben-Eli, D. Deamer & D. Lancet, 2001. The lipid world. Orig. Life Evol. Biosph. 31: 119–145.
  • Seldon, P.A. & D. Edwards, 1989. Colonisation of the land. In: Allen, K.C. & D.E.G. Briggs  (eds). Evolution and the Fossil Record: 122–152. Belhaven Press, London, UK.
  • Sharov, A.A., 2009. Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. Int. J. Mol. Sci. 10: 1838–1852.
  • Sharov, A.A., 2010. Genetic gradualism and the extra-terrestrial origin of life. J. Cosm. 5: 833-842. http://journalofcosmology.com/SearchForLife105.html.
  • Smale, S., 1980. The Mathematics of Time: Essays on Dynamical Systems, Economic Processes, and Related Topics. Springer Verlag, New York, USA.
  • Sober, E., 1975. Simplicity. Oxford University Press, UK.
  • Solari, A.J., 2002. Review. Primitive forms of meiosis: The possible evolution of meiosis. Biocell. 26: 1-13.
  • Solari, C.A., A.M. Nedelcu & R.E. Michod, 2003. Fitness and complexity in volvocalean green algae. In: Lipson, H., E.K. Antonsson, & J.R. Koza (eds). Computational Synthesis: From basic building blocks to high level functionality. AAAI Press, Stanford, CA; download reprint here.
  • Stanley, S.M., 1973. An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc. Nat. Acad. Sci. USA 70: 1486-1489.
  • Stewart, H.B. & J.M. Thompson, 1986. Nonlinear Dynamics and Chaos. John Wiley, Chichester, UK.
  • Szolnoki, A. & M. Perc, 2009. Emergence of multilevel selection in the prisoner’s dilemma game on coevolving random networks. New J. Phys.11: 093033 (http://iopscience.iop.org/1367-2630/11/9/093033/pdf/1367-2630_11_9_093033.pdf)
  • Tajika, E., 2008. Theoretical constraints on early earth’s environment. Viva Origino 36: 55-60.
  • Teske, A., A. Dhillon & M.L. Sogin, 2003. Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis and methane oxidation. Biol. Bull. 204: 186-191.
  • Thompson, N.S., 2000. Shifting the natural selection metaphor to the group level. Behav. Phil. 28: 83-101. http://store.behavior.org/resources/92.pdf
  • Treangen, T.J. & E.P.C. Rocha, 2011. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. 7: 1001284. (http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1001284)
  • Trevors, J.T. & R. Psenner, 2001. From self-assembly of life to present-day bacteria: a possible role for nanocells. FEMS Microbiol. Rev. 25: 573–582.
  • Trivers, R.L., 1971. The evolution of reciprocal altruism. Quat. Rev. Biol. 46: 35-57. http://www.cdnresearch.net/pubs/others/trivers_1971_recip.pdf
  • Van der Meer, H.J., 2009. De wonderbaarlijke overheersing van een misbaksel. NVOX 34: 414-415.
  • Van Dover, C.L., 1996. The Octopus 's Garden: Hydrothermal Vents and Other Mysteries of the Deep Sea. Addison Wesley Press, USA.
  • Vannini, A., 2005. Entropy and syntropy. From mechanical to life science. NeuroQuant.3: 88-110.
  • Vogel, W., 1869. Bees and bee-keeping in Egypt. Am. Bee J.5: 21-24. http://bees.library.cornell.edu/
  • Watanabe, Y., J.E.J. Martini & H. Ohmoto, 2000. Geochemical evidence for terrestrial ecosystems 2.6 billion years ago.Nature 408: 574-578.
  • Watson, A., 2002. Cosmic ripples confirm universe speeding up. Science 295: 2341-2342.
  • Webster, G. & B. Goodman, 1996.Form and Transformation. Generative and Relational Principles in Biology. Cambridge Univ. Press, UK.
  • Williams, G.C., 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398-411.
  • Williams, G.C., 1966. Adaptation and Natural Selection. A Critique of Some Evolutionary Thought. Princeton Univ. Press, USA.
  • Wilson, D.S., M. van Vucht & R. O’Gorman, 2008. Multilevel selection theory and major evolutionary transitions: Implications for psychological science. Cur. Dir. Psych. Sc. 17:  6-9.  
  • Wilson, E.O., 1975. Sociobiology: The New Synthesis.The Belknap Press of Harvard University Press. Cambridge, Mass., USA. Lichen-like symbiosis 600 million years ago. Science 308: 1017-1020.
  • Wilson, E. O. & B. Hölldobler, 2005. Eusociality: origin and consequences. PNAS  102: 13367-13371. http://www.pnas.org/content/102/38/13367.full.pdf+html
  • Yuan, X., S. Xiao & T.N. Taylor, 2005. Lychen-like symbiosis 600 million years ago. Science 308: 1017-1020.
  • Zahnle, K., L. Schaefer & B. Fegley, 2011. Earth’s earliest atmospheres. In: Deamer, D. &  J. Szostak (eds.). The Origins of Life. Cold Spring Harbour Laboratory Press.
  • Adamson, A.W., 1998. The gentle force of entropy. Science 5364: 655.
  • Alvarez de Lorenzana, J.M., 2006. Closure, open systems, and the modelling imperative. An. N.Y. Acad. Sci. 901: 91-99.
  • Anderson C.D. (1932), The apparent existence of easily deflectable positives. Science 76: 238.
  • Atkins, P.W., 1991. Atoms, Electrons and Change. Sci.. Am. Lib., N.Y. USA.
  • Axelrod, R. & W.D. Hamilton, 1981. The evolution of cooperation. Science 211: 1390-1396.
  • Bohm, D., 1980. Wholeness and the Implicate Order. Routledge, London, UK.
  • Cabodi, M., S.W.P. Turner & H.G. Craighead, 2002. Entropic recoil separation of long DNA molecules. Anal. Chem. 74: 5169-5174.
  • Calcott, B. & K. Steralny, 2011. A big picture of big pictures of life’s history. In: Calcott, B. & K. Sterelny (eds.). The Major Transitions in Evolution Revisited. MIT Press, Cambridge, Mass., USA.
  • Clark, A.J., 1997. Being There: Putting Brain, Body and World Together Again. MIT Press, Cambridge, Mass., USA.
  • Covello, A., 2003. From nucleon-nucleon interaction to nuclear structure. In: Oleandri, A. & M. Missioli (eds.). Proceedings of the International School of Physics CLIII: From Nuclei and their Constituents to Stars. IOS Press, Amsterdam, The Netherlands.
  • Conrad, M., 1998. Quantum gravity and life. BioSystems 46: 29-39.
  • Conrad, M., 1997. Principle of philosophical relativity. In: Rakić, L., G. Kostopoulos, D. Raković & D. Koruga, (eds.). Brain & Consciousness. Proc. ECPD Workshop, pp. 157-169.
  • Cramer, J.G., 1986. The transactional interpretation of quantum mechanics.Rev. Mod. Phys. 58: 647-688.
  • Davies, P., 2006. The physics of downward causation. In: Clayton, P. & P. Davies (eds.). The Re-emergence of Emergence: The Emergentist Hypothesis in Science and Reliogion. Oxford Univ. Press, N.Y. USA.
  • Di Corpo, U. & A. Vannini, 2010. Advanced waves and quantum mechanics. Syntropy 1: 74-81.
  • Doolittle, W.F., 2000. Uprooting the tree of life. Sci. Am. 282: 90.
  • Fielder, C. & C. King, 2006. Sexual Paradox: Complementary, Reproductive Conflict and Human Emergence. Lulu PR, Raleigh, N.C., USA.
  • Fox, S.W., 1965. Simulated natural experiments in spontaneous organization of morphological units from protenoid. In: S.W. Fox (ed.). The Origins of Prebiological Systems and Their Molecular Matrices, pp. 361-382. Acad. Press, N.Y., USA.
  • Gánti, T., 2003. Chemoton Theory Vol. 2. Theory of Living Systems. Kluwer Acad./Plenum Publ., N.Y., USA.
  • Gibson, D.G., J.I. Glass, C. Lartigue, V.N. Noskov, R.Y. Chuang, M.A. Algire, G.A. Benders, M.G. Montague, L. Ma, M.M. Moodie, C. Merryman, S. Vashee, R. Krishnakumar, N. Assad-Garcia, C. Andrews-Pfannkoch, E.A. Denisova, L. Young, Z.-Q. Qi, T.H. Segall-Shapiro, C.H. Calvey, P.P. Parmar, C.H. Hutchison III, H.O. Smith & J.C. Venter, 2010. Creation of bacterial cell controlled by a chemically synthesized genome. Science 329: 52-56. 
  • Giorbran, G., 2006. Everything Forever: Learning to See Timelessness. Enchanted Puzzle Publ. USA.
  • Greenberger, D.M. & K. Svozil, 2005. Quantum theory looks at time travel. In: Elitzur, A., S. Dolev & N. Kolenda (eds.). Quo Vadis Quantum Mechanics? Springer-Verlag, Berlin.  
  • Greene, B.R., 2004. The Fabric of the Cosmos. A.A. Knopf, N.Y. USA.
  • Griesemer, J. & E. Szathmáry, 2009. Gánti’s chemoton model and life criteria. In: Rasmussen, S., M.A. Bedau, L. Chen, D. Deamer, D.C. Krakauer, N.H. Packard & P.F. Stadler (eds.). Protocells: Bridging Nonliving and Living Matter. MIT Press, Cambridge, Mass.
  • Haken, H., 1983. Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer-Verlag, N.Y., USA.
  • Hamley, I., 2005. Block Copolymers in Solution: Fundamentals and Applications. John Wiley, Sussex, UK.
  • Heim, B., 1994. Einheitliche Beschreibung der materiellen Welt. Informatorische Zusammenfassung von „Elementarstrukturen der Materie“, Band 1 und Band 2. Resch-Verlag, Innsbruck.
  • Hernandez-Ortiz, J.P., H. Ma, J.J. de Pablo & M.D. Graham, 2008. Concentration distributions during  flow of confined flowing polymer solutions at finite concentration: slit and grooved channel. Kor.-Aust. Rheo. J. 20: 143-152.
  • Heylighen, F., 2010. The self-organisation of time and causality: steps towards understanding the ultimate origin. Found. Sci. 15: 345-356.
  • Heylighen, F., 2008. Complexity and self-organization. In: Bates, M.J. & M.N. Maack (eds.). Encyclopaedia of Library and Information Sciences. Taylor and Francis Group, London, UK.
  • Holland, O. & C. Melhuish, 2000. Stigmergy, self-organisation and sorting in collective robotics. Artificial Life 5 (2).
  • Hordijk, W., J. Hein & M. Steel, 2010. Autocatalytic sets and the origin of life. Entropy 12: 1733-1742.
  • Jagers op Akkerhuis, G.A.J.M., 2010. The Operator Hierarchy. A Chain of Closure Linking Matter, Life and Artificial Intelligence. PhD Thesis, Univ. Nijmegen, The Netherlands (http://www.hypercycle.nl/pdf/PhDoperatorhierarchy2010.pdf).
  • Jagers op Akkerhuis, G.A.J.M., 2008. Analysing hierarchy in the organisation of biological and physical systems. Biol. Rev. 83: 1-12.
  • Kauffman, S.A., 1986. Autocatalytic sets of proteins. J. Theor. Biol. 119: 1-24.
  • Kauffman, S.A., 1995. At Home in the Universe: The Search for the Laws of Self-Organisation and Complexity. Oxford Univ. Press, N.Y.
  • Kestenbaum, D., 1998. Gentle force of entropy bridges disciplines. Science 5358: 1849.
  • Kim, Y-H., R. Yu, S.P. Kulik, Y. Shih & M.O. Scully, 2000. Delayed “choice” quantum eraser. Phys. Rev. Lett. 84: 1-5.
  • Langton, C.G., 1986. Studying artificial life with cellular automata. Physica D 22: 1120-1149.
  • Lisi, A. G., 2007. An exceptionally simple theory of everything.
  • Mandelbrot, B.B., 1982. The Fractal Geometry of Nature. Freeman, UK.
  • Martin, J. & M.J. Russell, 2007. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362: 1887–1926 (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442388/?tool=pmcentrez).
  • Maynard Smith, J. & E. Szathmáry, 1995. The Major Transitions in Evolution. Oxford Univ. Press, N.Y.
  • Nahle, N., 2003. Compilation of new data from quantum physics and cosmology and its application for supporting the theory of abiogenesis. Conference Monterrey, N. L., MX (http://www.biocab.org/Abiogenesis_1.html).
  • Nicolis, G, & I. Prigogine, 1977. Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order through Fluctuations. Wiley, New York.
  • Oparin, A.I., 1938. The Origin of Life. Dover Publ. Inc., N.Y., USA.
  • Parker, E.T., H.J. Cleaves, J.P. Dworkin, D.P. Glavin, M. Callahan, A. Aubrey, A. Lazcano & J.L. Bada, 2011.Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. PNAS: http://www.pnas.org/content/early/2011/03/14/1019191108.long
  • Parades-Quijada, G., H. Aranda-Espinoza & A. Maldonado, 2009. Shapes and coiling of mixed phospholipid vesicles. Lipids 44: 283-289.
  • Pattee, H.H., 2001. The physics of symbols: bridging the epistemic cut. BioSystems 60: 5-21.
  • Pesci, A., 2010. A proof of the Bekenstein bound for any strength of gravity through holography. Class. Quantum Grav. 27: 165006.
  • Pribram, K., 1991.Brain and Perception: Holonomy and Structure in Figural Processing. Lawrence Erlbaum Ass., Hillsdale, N.J. USA.
  • Prigogine, I. & I. Stengers, 1984. Order out of Chaos: Man’s New Dialog with Nature. Bantam Books, N.Y. USA.
  • Queller, D., 2000. Relatedness and the fraternal major transitions. Phil. Trans. Roy. Soc. B 355: 1647-1656.
  • Szathmáry, E. & C. Fernando, 2011. Concluding remarks. In: Calcott, B. & K. Sterelny (eds.). The Major Transitions in Evolution Revisited. MIT Press, Cambridge, Mass.
  • Szathmáry, E. & J. Maynard Smith, 1995. The major evolutionary transitions. Nature, 374: 227-232.
  • Szent-Gyogyi, A., 1977. Drive in living matter to perfect itself. Synthesis 1: 14-26.
  • Stephens, C. R., G. 't Hooft & B.F. Whiting,1994. Black hole evaporation without information loss. Classical and Quantum Gravity 11: 621-648. (http://arxiv.org/PS_cache/gr-qc/pdf/9310/9310006v1.pdf)
  • Susskind, L., 2008. The Black Hole War. My Battle with Steven Hawking to Make the World Safe for Quantum Mechanics. Little, Brown & Co. USA.
  • Thompson, N.S., 2000. Shifting the natural selection metaphor to the group level. Behav. Phil. 28: 83-101. http://store.behavior.org/resources/92.pdf
  • Vannini, A. & U. Di Corpo, 2011. Retrocausality: Experiments and Theory (Syntropy). Ulisse Di Corpo, Amazon Media, UK.
  • Varela, F.J., H.R. Maturana & R. Uribe, 1974. Autopoeisis: the organisation of living systems, its characterisation and a model. Biosyst. 5: 187-196.
  • Vasas, V., E. Szathmáry & M. Santos, 2010. Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. PNAS 107: 1470-1475. (http://www.pnas.org/content/107/4/1470.full)
  • Waldrop, M.M., 1992. Complexity: The Emerging Science at the Edge of Order and Chaos. Viking, London, UK.
  • Weinberg, S., 1993. The First Three Minutes: A Modern View of the Origin of the Universe. Basic Books, N.Y.
  • Wheeler, J.A. & R.P. Feynman, 1945. Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17: 157-161.
  • Wilczek, F., 2006. Fantastic Realities: 49 Mind Journeys and a Trip to Stockholm. World Sci. Publ. Co. Pte. Ltd., London, UK.
  • Winkler, D.A., J.D. Halley & F.R. Burden, 2009. Modelling for regenerative medicine: systems biology meets systems chemistry. In: Hicks, M.G. & C. Kettner (eds.). Systems Chemistry. Proc. Beilstein-Institut Workshop, Bozen, Italy. (http://www.beilstein-institut.de/Bozen2008/Proceedings/Winkler/Winkler.html)
  • Zimmer, C., 2009. Origins. On the origin of eukaryotes. Sci. 325: 666–668.
  • Allison, W.T., T.J. Haimberger, C.W. Hawryshyn & S.E. Temple, 2004. Visual pigment composition in zebrafish: Evidence for a rhodopsin–porphyropsin interchange system. Visual Neurosci. 21: 945-952. (http://sitemaker.umich.edu/wtallison/files/allison_etal_2004_zebrafish_
    visual_pigment_shifts.pdf
    )
  • Avdesh, A., M.T. Martin-Iverson, A. Mondal, M. Chen, G. Verdile & R.N. Martins, 2010. Natural colour preference in the zebrafish (Danio rerio). Proc. Meas. Behav. Aug. 24-27: http://measuringbehavior.org/files/ProceedingsPDF(website)/Avdesh_FullPaper1.7.pdf
  • Baerends, G. P. & J.P. Kruijt, 1973. Stimulus selection. In:  R.A. Hinde & J. Stevenson-Hinde (Eds.). Constraints on Learning. Academic Press, London, UK. pp. 23-49.
  • Blackiston, D., A.D. Briscoe & M.R. Weiss, 2011. Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae). J. Exp. Biol. 214: 509-520. (http://jeb.biologists.org/content/214/3/509.full.pdf+html)
  • Bowmaker, J.K. & D.M. Hunt, 2006. Evolution of vertebrate visual pigments. Curr. Biol. 16: R484-R489. (http://www-stud.rbi.informatik.uni-frankfurt.de/~krotzky/Neuro-Seminar/Peichl2.pdf)
  • Bowmaker, J.K. & H.J. Dartnall, 1980. Visual pigments of rods and cones in a human retina. J. Physiol. 298: 501-511. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279132/?page=5)
  • Brunton, C.F.A., 1998. The evolution of ultraviolet patterns in European Colias butterflies (Lepidoptera, Pieridae): a phylogeny using mitochondrial DNA. Heredity 80: 611-616. (http://www.nature.com/hdy/journal/v80/n5/full/6883360a.html)
  • Clarke, L.A. & A.M. Sutterlin, 1985. Associative learning, short-term memory, and colour preference during first feeding by juvenile Atlantic salmon. Can. J. Zool. 63: 9-14.
  • Crozier, W.R., 1999. The meanings of colour: preferences among hues. Pigment & Resin Technol. 28: 6-14.
  • Deere, K.A., G.F. Grether, A. Sun & J.S. Sinsheimer, 2011. Female mate preference explains countergradient variation in the sexual coloration of guppies (Poecilia reticulata). Proc. R. Soc. B I: 10.1098/rspb.2011.2132.
  • Egger, B., Y. Klaefiger, A. Theis & W. Salzburger, 2011. A sensory bias has triggered the evolution of egg-spots in cichlid fishes. PLos ONE 6: e25601. www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0025601
  • El-Sayed, A.-F.M. & A.E. El-Ghobashy, 2010. Effects of tank colour and feed colour on growth and feed utilization of thinlip mullet (Liza ramada) larvae. Aquaculture Res. 42: 1163-1169.
  • Endler, J.A., D.A. Westcott, J.R. Madden & T. Robson, 2005. Animal visual systems and the evolution of colour patterns: sensory processing illuminates signal evolution.  Evolution 59: 1795-1818.
  • Gao, S., S. Takemura, C.-Y. Ting, S. Huang, Z. Lu, H. Luan, J. Rister, A.S. Thum, M. Yang, S.-T. Hong, J.W. Wang, W.F. Odenwald, B.H. White, I.A. Meinertzhagen & C.-H. Lee, 2008. The Neural Substrate of Spectral Preference in Drosophila. Neuron 60: 328-342. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665173/)
  • Glaschke, A., J. Weiland, D. Del Turco, M. Steiner, L. Peichl & M. Glösmann, 2011.Thyroid hormone controls cone opsin expression in the retina of adult rodents. J. Neurosci. 31: 4844-4851. (http://www.jneurosci.org/content/31/13/4844.full.pdf+html)
  • Ham, A.D., E. Ihalainen, L. Lindström & J. Mappes, 2006. Does colour matter? The importance of colour in avoidance learning, memorability and generalisation. Behav. Ecol. Sociobiol. 60: 482-491. (http://www.springerlink.com/content/8151j8u6p5875q02/)
  • Hurlbert, H.C. & Y.L. Ling, 2007. Biological components of sex differences in color preference. Curr. Biol. 17: 623–625. (http://download.cell.com/current-biology/pdf/PIIS096098220701559X.pdf?intermediate=true)
  • Humphrey, N., 1976. The colour currency of nature. In: Porter, T. & B. Mikellides (eds.). Colour for Architecture. Studio-Vista, London, UK. pp. 95-98. (http://www.humphrey.org.uk/papers/1976ColourCurrency.pdf)
  • Kawamura, G., T. Kasedou, T. Tamiya & A. Watanabe, 2010. Colour preference of five marine fishes: bias for natural and yellow-dyed krill in laboratory tanks, sea cages and an earthen pond. Marine Freshwater Behav. Physiol. 43: 169-182.
  • Luchiari, A.C. & J. Pirhonen, 2008. Effects of ambient colour on colour preference and growth of juvenile rainbow trout Oncorhynchus mykiss (Walbaum). J. Fish Biol. 72: 1504-1514.
  • Marchiafava, P.L., 1985. Cell coupling in double cones of the fish retina. Proc. R. Soc. London B 226: 211-215.
  • Maan, M.E., K.D. Hofker, J.J.M. van Alphen & O. Seehausen, 2006. Sensory drive in cichlid speciation. Am. Nat. 167: 947-954. (http://lacertilia.com/radiation_course/PDFs/Maan%20et%20al.%202006.pdf
  • Milinski, M. & T.C.M. Bakker, 1990. Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344: 330-333.
  • Muntz, W.R.A. & J.R. Cronly-Dillon, 1966. Colour discrimination in goldfish. Animal Behav. 14: 351-355.
  • Nakagawa, M., T. Iwasa, S. Kikkawa, M. Tsuda & T.G. Ebrey, 1999. How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation. Proc. Natl. Acad. Sci. USA 96; 6189–6192. (http://www.pnas.org/content/96/11/6189.full.pdf)
  • Orger, M.B. & H. Baier, 2005. Channelling of red and green cone inputs to the zebrafish optomotor response. Visual Neurosc. 22: 275-281. (http://baierlab.ucsf.edu/PDF/VN275.pdf)
  • Otálora-Luna, F. & J.C. Dickens, 2010. Spectral preference and temporal modulation of photic orientation by Colorado potato beetle on a servosphere.Entomologia Experimentalis et Applicata 138: 93-103.
  • Palmer, S.E. & K.B. Schloss, 2010. An ecological valence theory of human color preference. PNAS 107: 8877-8882. (http://www.pnas.org/content/107/19/8877.full.pdf+html)
  • Pryke, S.R., 2010. Sex chromosome linkage of mate preferences and color signal maintains assortative mating between interbreeding finch morphs. Evolution 64: 1301-1310. (http://sarahpryke.com/wp-content/uploads/2010/12/Pryke-2010.pdf)
  • Pohl, N.B., J. van Wyk & D.R. Campbell, 2011. Butterflies show flower colour preferences but not constancy in foraging at four plant species. Ecol. Entomol. 36: 290-300.
  • Raine, N.E. & L. Chittka, 2007. The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLoS one 2: e556: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000556.
  • Seehausen, O., Y. Terai, I.S. Magalhaes, K.L. Carleton, H.D.J. Mrosso, R. Miyagi, I. van der Sluijs, M.V. Sneider, M.E. Maan, H. Tachida, H. Imai & N. Okada, 2008. Speciation through sensory drive in cichlid fish. Nature 455: 620-626.
  • Schaerer, S. & C. Neumeyer, 1998. Motion detection in goldfish investigated with the optomotor response is “color blind”. Vision Res. 36: 4025-4034.
  • Schiedt, K., F.J. Leuenberger, M. Vecchi & E. Glinz, 1985. Absorption, retention and metabolic transformations of carotenoids in rainbow trout, salmon and chicken. Pure & Appl. Chem. 57: 685-692.
  • Schmidt, V. & H.M. Schaefer, 2004. Unlearned preference for red may facilitate recognition of palatable food in young omnivorous birds. Evol. Ecol. Res. 6: 919-925. (http://www.biologie.uni-freiburg.de/data/bio1/schaefer/pdf/schaefer2004.pdf)
  • Spady, T.C., J.W.L. Parry, P.R. Robinson, D.M. Hunt, J.K. Bowmaker & K.L. Carleton, 2006. Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol. Biol. Evol. 23: 1538-1547. (http://mbe.oxfordjournals.org/content/23/8/1538.full)
  • Spence, R. & C. Smith, 2008. Innate and learned colour preference in the zebrafish, Danio rerio. Ethology 114: 582-588.
  • Temple, S.E., S.D. Ramsden, T.J. Haimberger, K.M. Veldhoen, N.J. Veldhoen, N.L. Carter, W.-M. Roth & C.W. Hawryshyn, 2008. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch). J. Exp. Biol. 211: 2134-2143. (http://jeb.biologists.org/content/211/13/2134.long)
  • Temple, S.E., E.M. Plate, S. Ramsden, T.J. Haimberger, W.-M. Roth & C.W. Hawryshyn, 2006. Seasonal cycle in vitamin A1/A2-based visual pigment composition during the life history of coho salmon (Oncorhynchus kisutch). J. Comp. Physiol. A 192: 30-1-313. (http://www.springerlink.com/content/f0855715p7l1mqg2/)
  • Ulmann, J.F.P., T. Gallagher, N.S. Hart, A.C. Barnes, R.P. Smullen, S.P. Collin & S.E. Temple, 2011. Tank color increases growth, and alters color preference and spectral sensitivity, in barramundi (Lates calcarifer). Aquaculture 322: 235-240.
  • Wells, D.L., C.L. McDonald & J.E. Ringland, 2008. Color preferences in gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes). J. Comp. Psychol. 122: 213-219.
  • Zhang, J., 2003. Paleomolecular biology unravels the evolutionary mystery of vertebrate UV vision. PNAS 100: 8045-8047. (http://www.pnas.org/content/100/14/8045.full.pdf+html)
  • Arimoto, T., C.W. Glass & X. Zhang, 2010. Fish vision and its role in fish capture. In: He, P. (ed.). Behavior of Marine Fishes: Capture Processes and Conservation Challenges. Wiley-Blackwell, Ames, Iowa, USA. pp. 25-44.
  • Cachafeiro, M., A.-P. Bemelmans, K. Canola, V. Pignat, S.V. Crippa, C. Kostic & Y. Arsenijevic, 2010. Remaining rod activity mediates visual behaviour in adult rpe65 -/- mice. Invest. Ophthalmol. Vis. Sci. 51: 6835-6842. (http://www.iovs.org/content/51/12/6835.full.pdf+html)
  • Coombe, P.E., 1984. The role of retinula cell types in fixation behaviour of walking Drosophila melanogaster. J Comp  Physiol  A 155: 661-672.
  • Cummings, M.E., X.E. Bernal, R. Reynaga, A.S. Rand & M.J. Ryan, 2008.Visual sensitivity to a conspicuous male cue varies by reproductive state in Physalaemus pustulosus females. J. Exp. Biol. 211: 1203-1210. (http://jeb.biologists.org/content/211/8/1203.short)
  • Davis, W.J. & J.L. Ayers jr., 1972. Locomotion: control by positive-feedback optokinetic responses. Science 177: 183-185.
  • Douglas, R.M., T.J. McGill & G.T. Prusky, 2010. Visual behaviour. In: Pang, I.-H. & A.F. Clark (eds.). Animal Models for Retinal Diseases. Humana Press, New York, USA. pp. 13-24.
  • Eklöf, J., 2003. Vision in Echolocating Bats.  Doctoral Thesis Zoology Department, Göteborg University, Sweden. (http://fladdermus.net/thesis.htm)
  • Fritsches, K. & J. Marshall, 2002. Independent and conjugate eye movements during optokinesis in teleost fish. J. Exp. Biol. 205, 1241-1252.
  • Götz , K.G., (1969) Movement discrimination in insects.  In: Rendiconti, S.I.F. (ed.). Processing  of  Optical Data by Organisms and by Machines.  Academic Press, London-New  York, pp.  494-509.
  • Herbert, N.A., S. Kadri & F. Huntingford, 2011. A moving light stimulus elicits a sustained swimming response in farmed Atlantic salmon, Salmo salar L. Fish Physiol. Biochem. 37: 317-332. See also: http://www.optoswim.com/
  • Horváth, G. & G. Kriska, 2008. Polarization vision in aquatic insects and ecological traps for polarotactic insects. In: Lancaster, J. & R. A. Briers (eds.). Aquatic Insects: Challenges to Populations. CAB International Publishing, Chap. 11, pp. 204–229.
  • Imada, H., M. Hoki, Y. Suehiro, T. Okuyama, D. Kurabayashi, A. Shimada, K. Naruse, H. Takeda, T. Kubo & H. Takeuchi, 2010. Coordinated and cohesive movement of two small conspecific fish induced by eliciting a simultaneous optomotor response. PLoS ONE 5(6): e11248. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0011248
  • Jellali, A., H. Meziane, A. Ouagazzal, S. Rousseau, R. Romand, J. Auwerx, J. Sahel, P. Chambon & S. Picaud, 2005. The optomotor response: A robust first-line visual screening method for mice. Vision Res. 45: 1439-1446.
  • Kim, S.-H. & C.-S. Jung, 2010. The Role of the Pattern Edge in Goldfish Visual Motion Detection. Korean J. Physiol. Pharmacol. 14: 413-417. (http://synapse.koreamed.org/Synapse/Data/PDFData/0067KJPP/kjpp-14-413.pdf)
  • Land, M., 1999. Motion and vision: why animals move their eyes. J. Comp. Physiol. 185, 341-352.
  • Land, M. F. & D.-E. Nilsson, 2006. General-purpose and special-purpose visual systems. In:  E. Warrant & D.-E. Nilsson (eds.). Invertebrate Vision. Cambridge University Press, UK . pp 167-210.
  • Lehrer, M., 1993. Spatial vision in the honeybee: the use of different cues in different tasks. Vision Res. 34: 2363–2385.
  • Maan, M.E. & O. Seehausen, 2010. Mechanisms of species divergence through visual adaptation and sexual selection: Perspectives from a cichlid model system. Cur. Zool. 56: 285-299. (http://www.fishecology.ch/publikationen/pub_10/Maan_Seehausen_2010_CurrZool.pdf)
  • Mora-Ferrer, C. & C. Neumeyer, 2008. Neuropharmacology of vision in goldfish: A review. Vision Res. 49: 960-969.
  • Muntz, W.R.A., 1974. Comparative aspects of behavioural studies of vertebrate vision. In: Davson, H. & L.T. Graham (eds.). The Eye. Vol. 6. Academic Press, New York. pp. 155-226.
  • Nava, S.S., S. An & T. Hamil, 2011. Visual detection of UV cues by adult zebrafish (Danio rerio). J. Vision 11: http://www.journalofvision.org/content/11/6/2.full.
  • Pitcher, T.J., 1986. Behaviour of Teleost Fishes. Chapman & Hall, London, UK.
  • Pruskey, G.T., N.M. Alam, S. Beekman & R.M. Douglas, 2004.Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest. Ophthalmol. Vis. Sci. 45: 4611-4616. (http://www.iovs.org/content/45/12/4611.full)
  • Redfern, W.S., S. Storey, K. Tse, Q. Hussain, K.P. Maung, J.-P. Valentin, G. Ahmed, A. Bigley, D. Heathcote & J.S. McKay, 2011. Evaluation of a convenient method of assessing rodent visual function in safety pharmacology studies: Effects of sodium iodate on visual acuity and retinal morphology in albino and pigmented rats and mice. J. Pharmacol. Toxicol. Met. 63: 102-114.
  • Rick, I.P., M. Mehlis & T.C.M. Bakker, 2011. Male Red Ornamentation Is Associated with Female Red Sensitivity in Sticklebacks. PLoS ONE 6: e25554. (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0025554)
  • Rihel, J. & A.F. Schier, 2011. Behavioral screening for neuroactive drugs in zebrafish. Develop. Neurobiol. DOI: 10.1002/dneu.20910.
  • Robinson, E., A.R. Jarrett, S.E. Black & W. Davison, 2011. Visual acuity of snapper Pagrus auratus: effect of size and spectral composition. J. Fish Biol. 79: 1883-1894.
  • Saleem, A.B., K.D. Longden, D.A. Schwyn, H.G. Krapp & S.R. Schultz, 2012. Bimodal optomotor response to plaids in blowflies: mechanisms of component selectivity and evidence for pattern selectivity. J. Neurosci. 1: 1634-1642.
  • Strauss, R., M. Renner & K. Götz, 2001.Task-specific association of photoreceptor systems and steering parameters in Drosophila. J. Comp. Physiol. A 187: 617-632.
  • Talbot, C.M. & J. Marshall, 2010. Polarization sensitivity and retinal topography of the striped pyjama squid (Sepioloidea lineolata – Quoy/Gaimard 1832). J.Exp. Biol. 213: 3371-3377. (http://jeb.biologists.org/content/213/19/3371.full.pdf+html)
  • Umino, Y., E. Solessio & R.B. Barlow, 2008. Speed, spatial, and temporal tuning of rod and cone vision in mouse. J. Neurosci. 28: 189-198. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847259/)
  • Van der Meer, H.J., 1994. Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei. Brain Behav. Evol. 44: 40-49.
  • Wallman, J., 1975. A simple technique using an optomotor response for visual psychophysical measurements in animals. Vision Res. 15: 3-8.
  • Walls, G. L., (1942). The Vertebrate Eye and Its Adaptive Radiation. Cranbrook Institute of Science, Oxford, UK.
  • Barret, J.L., 2004. Why Would Anyone Believe in God?  Altamira Press, Oxford, UK.
  • Bucaille, M., 1976. La Bible, le Coran et la Science; les Ecritures saintes examinées à la lumière des connaissances modernes. Edition Seghers, France. (English translation available)
  • Collins, F.S., 2006. The Language of God. A Scientist Presents Evidence for Believe. Free Press, New York, USA.
  • Dawkins, R. The God Delusion. Houghton Mifflin Company, N.Y., USA.
  • Dixon, T., 2008. Science and Religion. A Very Short Introduction. Oxford University Press Inc., New York, USA.
  • Giudice, G.F., 2010. A Zeptospace Odyssey. A Journey into the Physics of the LHC. Oxford University Press, UK.
  • Goodstein, D., 2010. On Fact and Fraud: Cautionary Tales from the Front Lines of Science. Princeton Univ. Press, New Jersey, USA.
  • Gould, S.J., 1999. Rocks of Ages. Science and Religion in the Fullness of Life. The Library of Contemporary Thought, Ballantine Publ. Group, N.Y., USA.
  • Hamer, D.H., 2005. The God Gene: How Faith Is Hardwired into Our Genes. Anchor Books, New York, USA.
  • Hauser, M., 2006. Moral Minds: How Nature Designed our Universal Sense of Right and Wrong. Ecco, New York, USA.
  • Herakleitos, 2011. Alles Stroomt. Vertaald en toegelicht door Paul Claes. Athenaeum-Polak & Van Gennip, Amsterdam, Nederland. An original book in English is Remembering Heraclitus by R.G. Geldard (2000). Floris Books, Edinburgh, UK.
  • Hofstadter, D.R. & D.C. Dennett, 1981. The Mind’s I: Fantasies and Reflections on Self and Soul.  Basic Books, New York, USA.
  • Kuhn, T.S., 1962. The Structure of Scientific Revolutions. Univ. Chicago Press, USA.
  • Popper, K.R, 1972. Objective Knowledge: An Evolutionary Approach. Clarendon Press, Oxford, UK.
  • Rushdie, S., 2010. Luka and the Fire of Life. Jonathan Cape, London, UK.
  • Shermer, M.D., 2003. How We Believe. Science, Scepticism and the Search for God. Henri Holt & Co., New York, USA.
  • Spenard, M., 2011. Dualing with Dualism. The Forlorn Quest for the Immaterial Mind. Lulu, USA.
  • Swaab, D.F., 2011. Wij zijn ons Brein. Van Baarmoeder tot Alzheimer.(We are our Brains). Contact, Amsterdam, Nederland.
  • Thanassas, P., 2008. Parmenides, Cosmos, and Being: A Philosophical Interpretation. Marquette Univ. Press, Milwaukee, USA.
  • Van Kolfschoten, 2012. Ontspoorde Wetenschap. Over Fraude, Plagiaat en Academische Mores. De Kring, Amsterdam, Nederland.
  • Allison, W.T., L.K. Barthel, K.M. Skebo, M. Takechi, S. Kawamura & P.A. Raymond, 2010. Ontogeny of cone photoreceptor mosaics in zebrafish. J. Comp. Neur. 518:4182-4195.
  • Bradbury, J.W. & S.L. Vehrencamp, 2011. Principles of Animal Communication. Sinauer Associates Inc., Sunderland, USA.
  • Cronin, T.W. & N. Shashar, 2001. The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle. J. Exp. Biol. 204: 2461-2467.
  • Cronin, T.W., N. Shashar, R.L. Caldwell, J. Marshall, A.G. Cheroske & T.-H. Chiou, 2003. Polarization vision and its role in biological signalling. Integr. Comp. Biol. 43: 549-558.
  • Dahm, R. & R. Geisler, 2006. Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar. Biotechnol. 8: 329-345.
  • Darmaillacq, A.-S. & N. Shashar, 2008.Lack of polarization optomotor response in the cuttlefish Sepia elongata (d'Orbigny, 1845). Physiol. Behav. 94: 616-620.
  • Denton, E.J. & D.M. Rowe, 1994. Reflective communication between fish, with special reference to the greater sand eel, Hyperoplus lanceolatus. Phil. Trans. R. Soc. London B Biol. Sci. 344: 221–237.
  • Egri, A., M. Blahó, G. Kriska, R. Farkas, M. Gyurkovszky, S. Åkesson & G. Horváth, 2012. Polarotactic tabanids find striped patterns with brightness and/or polarization modulation least attractive: an advantage of zebra stripes. J. Exp. Biol. 215: 736-745.
  • Faisal, A.A., L.P.J. Selen & D.M. Wolpert, 2008. Noise in the nervous system. Nature Rev. Neurosci. 9: 292-303.
  • Fairbairn, M. B., 2001. Physical models of Haidingers brush. J. Roy. Astron. Soc. Can. 95: 248-251.
  • Fritsches, K. & J. Marshall, 2002. Independent and conjugate eye movements during optokinesis in teleost fish. J. Exp. Biol. 205, 1241-1252.
  • Gestri, G., B.A. Link & S.C.F. Neuhauss, 2012. The visual system of zebrafish and its use to model human ocular disease. Devel. Neurobio. 72: 302-327.
  • Glantz, R.M. & J.P. Schroeter, 2006. Polarization contrast and motion detection. J. Comp. Physiol. A 192: 905-914.
  • Gregory-Evans, C.Y., 2012. Zebrafish: a model system for the investigation of novel treatments for retinal disease. Advan. Exp. Med. Biol. 723: 399-405.
  • Hardie, R.C., 2012. Polarization vision: Drosophila enters the arena. Cur. Biol. 22: R12-R14.
  • Hasegawa, E., 2007.Visual characteristics of three species of salmonids stocked from Japanese hatcheries. North Pacific Anadromous Fish Comm. Tech. Rep. 7: 107–109.
  • Hawryshyn, C.W., 2010. Ultraviolet polarization vision and visually guided behavior in fishes. Brain Behav. Evol. 75: 186-194.
  • Hawryshyn, C.W. & W.N. McFarland, 1987. Cone  photoreceptor mechanisms  and  the detection of  polarized light in fish. J. Comp. Physiol. A 160: 459-465.
  • Hawryshyn, C.W., S.D. Ramsden, K.M. Betke & S. Sabbah, 2010. Spectral and polarization sensitivity of juvenile Atlantic salmon (Salmo salar): phylogenetic considerations. J. Exp. Biol. 213: 3187-3197.
  • Hofsten, J. von & P.-E. Olsson, 2005. Zebrafish sex determination and differentiation: Involvement of FTZ-F1 genes. RB&E 3: 63; http://www.rbej.com/content/3/1/63
  • Horváth, G. & D. Varjú, 2003. Polarized Light in Animal Vision: Polarization Patterns in Nature. Springer-Verlag, Berlin, Heidelberg, New York.
  • Jellali, A., H. Meziane, A. Ouagazzal, S. Rousseau, R. Romand, J. Auwerx, J. Sahel, P. Chambon & S. Picaud, 2005. The optomotor response: A robust first-line visual screening method for mice. Vision Res. 45: 1439-1446.
  • Johnson, S., N.J. Marshall & E.A. Widder, 2011.Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton. Phil. Trans. R. Soc. B 366: 655–670.
  • Kamermans, M. & C. Hawryshyn, 2011. Teleost polarization vision: how it might work and what it might be good for. Phil. Trans. R. Soc. B 366: 742-756.
  • Kim, S.-H. & C.-S. Jung, 2010. The Role of the Pattern Edge in Goldfish Visual Motion Detection. Korean J. Physiol. Pharmacol. 14: 413-417.
  • Kleerekoper, H., J.H. Matis, A.M. Timms & P. Gensler, 1973. Locomotor  response of  the goldfish to polarized light and its e-vector. J. Comp. Physiol. 86: 27-36.
  • Kraft, P., C. Evangelista, M. Dacke, T. Labhart & M.V. Shrinivasan, 2011. Honeybee navigation: following routes using polarized-light cues. Phyl. Trans. R. Soc. B 366: 703-708.
  • Maan, M.E., K.D. Hofker, J.J.M. van Alphen & O. Seehausen, 2006. Sensory drive in cichlid speciation. Am Nat. 167: 947-954.
  • Mappes, M. & U. Hornberg, 2004. Behavioral analysis of polarization vision in tethered flying locusts. J. Comp. Physiol. 190: 61-68.
  • Marshall, N.J. & T.W. Cronin, 2011. Polarisation vision. Cur. Biol. 21: 101-105.
  • Mäthger, L.M., N. Shashar & R.T. Hanlon, 2009. Do cephalopods communicate using polarized light reflections from their skin? J. Exp. Biol. 212: 2133-2140.
  • Mussi, M., T.J. Haimberger & C.J. Hawryshyn, 2005. Behavioural discrimination of polarized light in the damselfish Chromis viridis (family Pomacentridae) J. Exp. Biol. 208: 3037-3046.
  • Nava, S.S., S. An & T. Hamil, 2011. Visual detection of UV cues by adult zebrafish (Danio rerio). J. Vision 11: 2, 1-5. 
  • Neuhauss, S.C.F., 2010. Zebrafish vision: structure and function of the zebrafish visual system. In: Perry, S.F., M. Ekker, A.P. Farrell & C.J. Brauner (eds.). Zebrafish. Acad. Press, London, UK. pp 82-122.
  • Novales Flamarique, I., C.W. Hawryshyn & F.I. Hárosi, 1998. Double cone internal reflection as a basis for polarization detection in fish. J. Opt. Soc. Am. A 15: 349-357.
  • Pignatelli, V., S.E. Temple, T.-H. Chiou, N.W. Roberts, S.P. Colin & N.J. Marshall, 2011. Behavioural relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes. Phil. Trans. R. Soc. B 366: 734-741.
  • Ramsden, S.D., L. Anderson, M. Mussi, M. Kamermans & C.W. Hawryshyn, 2008. Retinal processing and opponent mechanisms mediating ultraviolet polarization sensitivity in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 211: 1376-1385.
  • Raymond, P.A. & L.K. Barthel, 2004. A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. Int. J. Dev. Biol. 48: 935-945.
  • Rick, I.P., M. Mehlis & T.C.M. Bakker, 2011. Male Red Ornamentation Is Associated with Female Red Sensitivity in Sticklebacks. PLoS ONE 6: e25554. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0025554
  • Roberts, N.W. & M.G. Needham, 2007. A Mechanism of Polarized Light Sensitivity in Cone Photoreceptors of the Goldfish Carassius auratus. Biophys.J.93: 3241-3248.
  • Roberts, N.W., M.L. Porter & T.W. Cronin, 2011. The molecular basis of mechanisms underlying polarization vision. Phil. Trans. R. Soc. B 366: 627-637.
  • Schaerer, S. & C. Neumeyer, 1996. Motion detection in goldfish investigated with the optomotor response is “color blind”. Vision Res. 36, 4025–4034.
  • Seliger, H.H., A.B. Lall & W.H. Biggley, 1994. Blue through UV polarization sensitivities in insects. Optimizations for the range of atmospheric polarization condition. J.Comp. Physiol. A 175: 475-486.
  • Shashar N., S. Johnsen, A. Lerner, S. Sabbah , C.C. Chiao, L.M. Mathger & R.T. Hanlon, 2011. Underwater linear polarization- physical limitations to biological functions. Phil. Trans. R. Soc. B. 366: 649-654.
  • Simmich, J., E. Staykov & E. Scott, 2012. Zebrafish As an appealing model for optogenetic studies. Prog. Brain Res. 196: 145-162.
  • Stalleicken, J., T. Labhart & H. Mouritsen, 2006. Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J. Comp. Physiol. A 192: 321-331.
  • Streisinger, G., C. Walker, N. Dower, D. Knauber, & F. Singer, 1981. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293-296.
  • Talbot, C.M. & J. Marshall, 2010. Polarization sensitivity in two species of cuttlefish – Sepia plangon (Gray 1849) and Sepia mestus (Gray 1849) – demonstrated with polarized optomotor stimuli. J. Exp. Biol. 213: 3364-3370.
  • Umino, Y., E. Solessio & R.B. Barlow, 2008. Speed, spatial, and temporal tuning of rod and cone vision in mouse. J. Neurosci. 28: 189-198.
  • Van der Meer, H.J., 1994. Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei. Brain Behav. Evol. 44: 40-49.
  • Weir, P.T. & M.H. Dickinson, 2012. Flying Drosophila orient to sky polarization. Cur. Biol. 22: 21-27.
  • Wernet, M.F., M.M. Velez, D.A. Clark, F. Baumann-Klausener, J.R. Brown, M. Klovstad, T. Labhart & T.R. Clandinin, 2012. Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Cur. Biol. 22: 12-20.